DeepL Write Proは、文章作成で頼れるAIアシスタントです。英語、ドイツ語、フランス語、およびスペイン語で、自信を持って明確なコミュニケーションを取れるようになります。どこで作業していても、DeepL Write Proが文法の誤りを正し、最適な言い回しや目的に合った文体を提案してくれるため、文章を素早く改善できます。
近年の AI の進歩により、論文の読み方も大きく変化を遂げました。AI を活用することで以前と比べてはるかに簡単かつ早く論文が読めるようになりました。 以前私の個人ブログにて、論文の読み方やまとめ方を紹介しました。その時には要約ツールは用いていませんでしたが、最近はすっかり要約ツールを多用するようになりました。 本稿では、最新の AI を使った論文の読み方を丁寧に紹介します。 基本的な流れ 本稿でおすすめするのは ChatGPT か Claude で要約を生成して論文の概要をつかみ、Readable で精読するという方法です。ChatGPT や Claude では単に全体の要約を生成するだけでなく、肝となる箇所を特定したり理解するためにも用います。具体的な手順については後の項で解説します。 私が特定のテーマについて調査を行う場合には、テーマに関係する論文を被引用数の多いものを中心に 10
この記事について この記事に書いてあること この一ヶ月ほど、遅ればせながらLLMによる小説執筆の支援という試みを実地でやってみたので、その中で結構良かったなと思ったプロンプトを紹介する。 使用したモデルはClaude 3 Opus。 この記事で書かないこと 生成AI「で」小説を書くことについての記事であり、生成AI「に」小説を書かせることについての記事ではない。 具体的に言うと、LLMに小説の本文を出力させる話ではない。本当のところを言うとちょっとは試したけど、ちょっと試したくらいでは全然使い物にならなかった。色々と工夫すれば違うかもしれないが、自分の場合、色々と工夫するほど興味を抱かなかった(だって、小説書くのが趣味なのに、そこは渡したくないだろ)。 一般的な注意事項 小説ないしはその原型となるアウトラインをテキストファイルにしてまるごとClaudeに読み込ませてプロンプトを実行している
「ChatGPTはすぐに嘘をつくから調べものには使えない」という意見をよく聞くが、これには大きな誤解がある。 そもそもChatGPTの心臓部である大規模言語モデル(LLM)は、膨大な知識を元にテキストを「生成」する仕組みだ。 逆に言うと、知識として持っていないことは一切わからないので、知らないことについて説明を求められても能力的に不可能なのだ。 だから、知識にない質問をされると答えられないだけでなく、苦し紛れに幻覚(ハルシネーション)を起こしてしまう。これが「すぐに嘘をつく」と言われる理由だ。 結論を書いてしまうと「ChatGPTは検索ツールではない」のだ。むしろ「ChatGPTがいちばん苦手とすることが検索」なのだ。 今回はこの欠点を補い、AIを活用した新しい検索の形を実現するという触れ込みのサービス「Perplexity.ai」を紹介していく。 Perplexity.aiとは Perp
1.プロンプトエンジニアリングとは 1-1.プロンプトとは 1-2.プロンプトの構成要素 2.プロンプトエンジニアリングの代表的な手法 2-1.Zero-shot prompting 2-2.Few-shot prompting 2-3.CoT(Chain-of-Thought) Prompting 2-4.Zero-shot CoT 2-5.Self-Consistency 2-6.Generate Knowledge Prompting 2-7.ReAct 2-8.Directional-Stimulus -Prompting 2-9.Multimodal CoT Prompting 3.敵対的プロンプトエンジニアリングの代表的な手法 3-1.Prompt-Injection 3-2.Prompt-Leaking 3-3.Jailbreak 3-4.Do Anything Now 3-
以下のXを見て、早速「Create」を試してみたので、実際に使った所感をまとめます AIがリアルタイムでWebページを作ってくれる神サイト ㅤ 会話だけで、理想のUIを実現することが可能 ㅤ 使い方・活用法をツリーにまとめます! ㅤ ブックマーク保存をおすすめします↓ pic.twitter.com/J1cJkUkyO8 — すぐる | ChatGPTガチ勢 𝕏 (@SuguruKun_ai) March 25, 2024 一言で言うとヤバいです... 詳細は以下のサイトでも解説しています Createとは Create 公式サイト Createは、1行のコードを書かなくても自然言語を使って、高度なAIを搭載したアプリやツールが作成できる生成AI搭載のノーコードツールです。 エンジニアでなくともChatGPT APIやStable Diffusion APIを組み込んだアプリが簡単に作れ
ニューラルネットワークのパフォーマンス評価を実施する業界コンソーシアムのMLCommonsは、さまざまなシナリオでハードウェアのAI処理性能を測定できるベンチマークテスト「MLPerf Inference」を設計しています。最新の「MLPerf Inference v4.0」では、パフォーマンス指標として新たにMetaの大規模言語モデル「Llama 2 70B」と画像生成AIの「Stable Diffusion XL」が追加されました。 New MLPerf Inference Benchmark Results Highlight The Rapid Growth of Generative AI Models - MLCommons https://mlcommons.org/2024/03/mlperf-inference-v4/ Nvidia Tops Llama 2, Stabl
1ビットLLMの衝撃! 70Bで8.9倍高速 全ての推論を加算のみで!GPU不要になる可能性も 2024.02.28 Updated by Ryo Shimizu on February 28, 2024, 16:46 pm JST 2月は中国では春節というお正月があり、春節にはみんな休む。 それもあってか、12月から1月にかけて怒涛の論文発表が行われて毎日「デイリーAIニュース」を配信している筆者は忙殺されていた。 春節中にはOpenAIがSoraを、GoogleがGemini1.5を発表したのは、その合間を縫ってのことだった。もはやAI最前線の戦いは研究が行われる場所の文化や風土に影響を受けるところまで来ている。 そして春節もあけた今週、さっそくAlibabaがとんでもないトーキングヘッドモデルを引っ提げて登場したかと思えば、Microsoftの中国チームがとてつもないLLMをリリース
日本電信電話(NTT)は3月25日、独自に開発した大規模言語モデル(LLM)「tsuzumi」の商用提供を企業向けに開始した。代表取締役社長を務める島田明氏は「2027年までに売上1000億円を目指す」と述べた。 tsuzumiは、NTTが2023年11月に発表した国産LLMだ。特徴の1つはモデルを大幅に軽量化した点で、パラメーター数は軽量版で70億と、OpenAIが提供する「GPT-3」の25分の1程度しかない。これによって、1つのGPUで動作し、大規模ハードウェア不要で事務所内でのオンプレミス利用にも対応する。 2つ目の特徴は「世界トップレベルの日本語処理能力」だ。パラメーターを軽量化したにも関わらず、GPT3.5と日本語性能で比較した場合の勝率は8割を超え、英語においても高い処理能力を達成しているという。さらに、マルチモーダルにも対応し、パワーポイントの図表読解や聴覚も備える。 3つ
画像生成AIサービスの「Midjourney」に3月12日、新機能「Creative Reference」が追加。1枚の画像から特徴を引き継いだ画像を生成できるようになり、同じキャラクターに別のポーズをとらせるなど様々な画像を作れるようになりました。これまで画像生成AI「Stable Diffusion」などで同じキャラクターの画像を作るには「LoRA」という追加学習をするのが一般的でしたが、それが必要ないため、キャラクターの再現が劇的に簡単になってきました。 画像1枚で“似た顔” Midjourneyの新機能「Creative Reference」 使い方は、MidjourneyのDiscordに画像をアップロードして、「Creative reference」のタグ(cref)をつけてプロンプトを入力するだけ。CW 0〜100までのパラメーターがあり、0だと顔だけが共通になり、あとは数字
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く