概要 pysocviz が提供する機能 ggplot2 と同じようにできないところとその対策 aes() にクオートされてない変数を指定できない R のように改行できない ggplot2 で使えた色名が使えない ggplot2 で使えた linetype が使えない 文字化けの回避 ggrepel パッケージの利用 scales::percent などの単位・スケール指定 テーマや色パレットのプリセットを変更したい場合 subtitle/caption が表示されない 複数のグラフを連結できない hjust/vjust が使えない グラフ内の図形やテキストの大きさのバランスがおかしい geom_smooth/stat_smooth で一般化加法モデル (GAM) による平滑化ができない geom_quantile の method 指定ができない geom_smooth/stat_smoo
Pythonでお仕事する前提で、現在のところで自分が最適と考えるチーム開発のための環境整備についてまとめてみました。今までももろもろ散発的に記事に書いたりしていたのですが、Poetryで環境を作ってみたのと、過去のもろもろの情報がまとまったものが個人的にも欲しかったのでまとめました。前提としては次の通りです。 パッケージ管理や開発環境整備でPoetryを使う 今時はコードフォーマッター、静的チェックは当たり前ですよね? コマンドでテスト実行、コードチェックとか実行とかができる(CI/CD等を考えて) VSCodeでもコマンドで実行しているのと同じコードチェックが可能(ここコンフリクトすると困る) デプロイはDockerイメージ コンテナのデプロイ環境でコンテナに割り当てられたCPU能力を比較的引き出せて、スケールさせたら線形にパフォーマンスアップできるようなasyncioを前提とした環境構
こんにちは。ホクソエム支援部サポーターのPython担当、藤岡です。 最近はデータエンジニア見習いとしてBI周りを触っています。 今回はpytestのfixtureについての記事です。 pytest自体が有名で記事もたくさんあるので、今回は地味だけど重要だと個人的に思っている usefixturesとスコープについて取り上げます。 地味とはいえ、pytestの初心者がfixtureを使いこなすためのステップアップに必要な内容だと思います。 ぜひマスターしていただければ幸いです。 1. 前書き 基礎的なことに関してはこの記事にとても簡潔にまとまっているので、こちらをまず読むのがオススメです。とても良い記事です。 pytestは独自の書き方を持ち込んでいるライブラリです。その機能を使いこなすと「綺麗」なコードにはなりますが、反面それは使われている機能を知らない人にとってはこの上なく読みにくいも
本チュートリアルに関してのご質問は、SIGNATEにて開催中のコンペティションサイト( https://signate.jp/competitions/443 )のフォーラムにおきまして、新規のスレッド(ディスカッション)にてご質問していただけますと幸いです。 また、本チュートリアルに関してのご要望があれば、Githubリポジトリ( https://github.com/JapanExchangeGroup/J-Quants-Tutorial )の Issues からご意見をいただけますと幸いです。 (なお、投稿の際には、過去に同じご要望がないかご確認ください。) 2021-01-29: 初版リリース 2021-02-05: 誤字や表記の修正を中心に改良 2021-02-12:
自分がよく使用する日本語自然言語処理のテンプレをまとめたものです。 主に自分でコピペして使う用にまとめたものですが、みなさんのお役に立てれば幸いです。 環境はPython3系、Google Colaboratory(Ubuntu)で動作確認しています。 Pythonの標準機能とpipで容易にインストールできるライブラリに限定しています。 機械学習、ディープラーニングは出てきません!テキストデータの前処理が中心です。 前処理系 大文字小文字 日本語のテキストにも英語が出てくることはあるので。 s = "Youmou" print(s.upper()) # YOUMOU print(s.lower()) # youmou 全角半角 日本語だとこちらのほうが大事。 全角半角変換のライブラリはいくつかありますが、自分はjaconv派。 MIT Licenseで利用可能です。 import jaco
指針 厳密解法に対しては、解ける問題例の規模の指針を与える。数理最適化ソルバーを使う場合には、Gurobi かmypulpを用い、それぞれの限界を調べる。動的最適化の場合には、メモリの限界について調べる。 近似解法に対しては、近似誤差の指針を与える。 複数の定式化を示し、どの定式化が実務的に良いかの指針を示す。 出来るだけベンチマーク問題例を用いる。OR-Libraryなどから問題例をダウンロードし、ディレクトリごとに保管しておく。 解説ビデオもYoutubeで公開する. 主要な問題に対してはアプリを作ってデモをする. 以下,デモビデオ: 注意 基本的には,コードも公開するが, github自体はプライベート そのうち本にするかもしれない(予約はしているが, 保証はない). プロジェクトに参加したい人は,以下の技量が必要(github, nbdev, poetry, gurobi); ペー
Home Blog Pythonのlinter/formatterを誰でも手軽に設定できるようにするためのPFN社内ツール “pysen” の紹介 Python向けのlinter/formatter設定ツール「pysen」を pypi.org および github.com で一般公開しました。 このツールは主にPython向けのlinter/formatterの設定を一元管理し、Preferred Networks社内でよく使われているツール環境を誰でも簡単に設定できるように支援するツールです。チームごとに分散しうるようなツールに関するノウハウをコードとして集約し、PFN社内での共有を促進させることを目的として開発しています。pysenは実際にPFN社内で使われており、2020年4月に開発がスタートしてから、2021年3月現在でおよそ100を超える社内リポジトリに導入されています。 上図:
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く