本スライドでは、以下の2つの内容を紹介します。 1.乱択アルゴリズム(乱数を使って問題を解くアルゴリズム) 2.ランダムな入力に対するアルゴリズム
本スライドでは、以下の2つの内容を紹介します。 1.乱択アルゴリズム(乱数を使って問題を解くアルゴリズム) 2.ランダムな入力に対するアルゴリズム
はじめに このドキュメントは,主に競技プログラミングで出題される問題を解く際に利用できるアルゴリズムやデータ構造をまとめたものです.特定の問題にはあまりフォーカスしないため,問題を解く際の考察の仕方等の内容はありません.詳しく,正確に,分かりやすく書いていこうと思っています. このドキュメントは執筆途中です. 想定する読者 C++を用いたプログラミングに慣れている方を読者として想定しており,C++言語の仕様や,文法にはあまり触れません.また,計算量という用語についても説明しません.ただし,償却計算量など,計算量の見積もりが複雑なものについては必要に応じて説明します. コードについて このドキュメントで登場するコードは,可読性向上のため,以下のようなコードがファイルの先頭に記述してあることを前提としています.また,適切な問題を用いてコードの検証がなされている場合は,コード周辺にのように,検証
online casino malaysia online casino singapore[phpBB Debug] PHP Warning: in file [ROOT]/phpbb/session.php on line 1065: Cannot modify header information - headers already sent by (output started at [ROOT]/vendor/autoload.php:3) [phpBB Debug] PHP Warning: in file [ROOT]/phpbb/session.php on line 1065: Cannot modify header information - headers already sent by (output started at [ROOT]/vendor/autolo
If you like recursion like I do, you may find it pleasing. It's elegant, concise, simpl... Sorry, what did you say? Stack overflows? Oh, right... 🤦♂️ Making recursion stack-safeAs you have rightfully pointed out, dear reader, the above implementations of map is not stack-safe (and neither is the factorial one). You may have read my article explaining when an Elm function is tail-call recursive o
こんにちは。LegalForce Researchで研究員をしている神田 (@kampersanda) です。 LegalForce Researchでは現在、高速なパターンマッチングマシン Daachorse(ダークホース)を開発・運用しています。文字列処理の基礎である複数パターン検索を提供するRust製ライブラリです。以下のレポジトリで公開されています。 github.com 本記事はDaachorseの技術仕様を解説します。具体的には、 複数パターン検索に関係する基礎技術(トライ木・Aho–Corasick法・ダブル配列) Daachorseの実装の工夫と性能 を解説します。 以下のような方を読者として想定します。 文字列処理アルゴリズムやデータ構造に興味のある方 自然言語処理の要素技術に興味のある方 Rustライブラリに興味がある方 Daachorseについて 複数パターン検索の基
This post is about an ingenious algorithm for printing integers into decimal strings. It sounds like an extremely simple problem, but it is in fact quite more complicated than one might imagine. Let us more precisely define what we want to do: we take an integer of specific bit-width and a byte buffer, and convert the input integer into a string consisting of its decimal digits, and then write it
This is an upcoming high performance computing book titled “Algorithms for Modern Hardware” by Sergey Slotin. Its intended audience is everyone from performance engineers and practical algorithm researchers to undergraduate computer science students who have just finished an advanced algorithms course and want to learn more practical ways to speed up a program than by going from O(nlogn)O(n \log
1. Encode the input to binary using UTF-8 and append a single '1' to it. 2. Prepend that binary to the message block. 3. Append the original message length (0, 0 in decimal) at the end of the message block as a 64-bit big-endian integer. 4. Add 447 zeros between the encoded message and the length integer so that the message block is a multiple of 512. In this case 0 + 1 + 447 + 64 = 512
Reversing an integer hash function This is an integer hash function written by Thomas Wang: uint32_t hash6432shift(uint64_t key) { key = (~key) + (key << 18); key ^= key >> 31; key *= 21; key ^= key >> 11; key += key << 6; key ^= key >> 22; return 0xFFFFFFFF & key; } It hashes down a 64-bit input to a 32-bit output. It has good mixing: basic statistical analysis can show that it has reasonably goo
はじめに 最近,「一般化ぷよぷよのより強い計算困難性」なる研究を発表しました(東北大学の江藤宏先生,九州大学の木谷裕紀先生との共同研究.国内研究会であるゲームプログラミングワークショップで江藤先生による口頭発表.2021年12月30日現在,pdfはここから取れます). これは有名なビデオゲーム「ぷよぷよ」を一人用のパズルと見立てたとき,かつそれを一般化した場合,どの程度難しいものであるのかを(最適化)アルゴリズム論的に分析したものです.今回「最適化技術の応用・実践」に関する記事を集めよう,ということになりましたので,ちょうどよい題材ということで,この研究をより一般向けに解説してみようと思います.一般向けですので証明自体には踏み込まず,既存の定理と得られた定理の意義をおよそわかっていただくことをこの記事の目標とします.ただし「ぷよぷよ」について関してはおよそルール等がわかっている方を対象とし
絶対に勝てない6x6リバーシを作りました。あなたは黒番、AIが白番です。 絶対に勝てない6x6リバーシを作りました! ぜひ挑戦してみてくださいhttps://t.co/Ul5n3q9jMp— Yusuke Endoh (@mametter) December 30, 2021 これは何? 6x6の盤面のリバーシは後手必勝 *1 であることが知られています。 このAIは白番(後手)で完璧にプレイします。つまり黒番のあなたは絶対に勝てません。無力感を楽しんでください。 技術的な話 このAIはWebAssemblyになっているので、全部あなたのブラウザの上で動いてます。真のサーバーレスです。 AIのソースコードはRustで書きました。わりと堅実なゲーム木探索になってます。UIは普通にTypeScriptとthree.jsで実装しました。 github.com 作った順に説明します。 盤面の表現
この記事は、CAMPHOR- Advent Calendar 2021 の7日目の記事です。 「アルゴ式」というプログラミングを学んで実践できる非常に良質なWebサービスがあります。 アルゴリズムについて解説された教科書だけでなく、実際にプログラミングを書いて提出してオンラインでジャッジしてくれるシステムを備えた練習問題も用意されているのが特徴です。さらにこのオンラインジャッジシステムは多くのプログラミング言語に対応しており、その中にはHaskellも含まれています。 今回はこのアルゴ式を読むにあたって練習問題をHaskellで解くために必要になりそうな知識についてまとめました。アルゴ式は現在ベータ版なので将来的な変更で変わってしまうものもあるかもしれませんが、2021年12月現在の練習問題を全てHaskellで解いた上で必要になったものをまとめているので参考にしていただけると幸いです。
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く