数値解析の分野において、ニュートン法(ニュートンほう、英: Newton's method)またはニュートン・ラフソン法(英: Newton–Raphson method[1])は、方程式系を数値計算によって解くための反復法による求根アルゴリズムの1つである。対象とする方程式系に対する条件は、領域における微分可能性と2次微分に関する符号だけであり、線型性などは特に要求しない。収束の速さも2次収束なので古くから数値計算で使用されていた。名称はアイザック・ニュートンとジョゼフ・ラフソンに由来する。ニュートン法を複素平面に適用し、初期値がどの解に収束するかについて色分けした結果としてニュートン・フラクタルを描くことができる(初期値の境界における挙動の予測が難しいことを示している)[2]。 ニュートン法の一手順の概念図 (青い線が関数 f のグラフで、その接線を赤で示した). xn よりも xn+
