タグ

ブックマーク / qiita.com/Ugo-Nama (2)

  • 誤差逆伝播法のノート - Qiita

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? はじめに ※)「目標関数」をより一般的な名称である「損失関数(Loss Function)」表記に改めました.(2015Oct19) 誤差逆伝播法(以下,Backprop)は多層パーセプトロンを使う人にとってお馴染みのアルゴリズムですよね. いや,これだけ有名なアルゴリズムなのでちょっとネットで探してみれば沢山解説を見つけることが出来るのですが,Backpropを予測誤差の最小化に適用する場合の説明しかみつからないんです.(とはいえ,PRMLをちゃんと読めば全部載ってるんですが). Backpropでできることは何なのか? ということが

    誤差逆伝播法のノート - Qiita
  • DQNの生い立ち + Deep Q-NetworkをChainerで書いた - Qiita

    #はじめに そもそもDQNが作りたかったわけじゃなくて、他の目的でChainerを使いたかったのでその練習にDQNを書いたんですが、せっかくだし公開しようと思いました 公開しました 。またどうせ公開するなら、この機会にこれ(Q学習+関数近似)関連で持っている知識をついでに整理しようと思ってまとめました。 ニュース記事とかNatureとかNIPSの論文だけ読むと、DQN作ったDeepmind/Googleすげー!!!って感覚になりそうですが、強化学習的な歴史的経緯を考えると強化学習+深層学習になった、むしろかなり当然の成り行きで生まれた技術であることがわかります。(ATARIのゲームを人間以上のパフォーマンスでプレイするというのがビジュアル的にわかりやすかった$\leftrightarrow$問題設定が良かったというのもあります。) この記事ではNIPSとNatureの以下の2の論文 ・

    DQNの生い立ち + Deep Q-NetworkをChainerで書いた - Qiita
  • 1