SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜

こんばんは. 気がつけばもうずいぶんと涼しくなってきました. 勢い余って凍ってしまったりせぬよう, くれぐれも普段の言動にはお気をつけください. はじめに さて, 我々人類にはどうしても二つの文字列 (あるいは行ごとに区切られたテキスト) 間の差分を求めなければいけない瞬間が発生します. 先人たちはそういった時のために diff のようなツールを開発し, それを利用することで文明はめざましい発展を遂げてきました. しかしながら, 使用するアルゴリズムを比較検討したい場合, 「差分」の定義を変えるなどして既存のアルゴリズムに変更を加えたい場合, diff のない異世界に飛ばされて自分で実装しなければいけない時などにおいては, 差分検出アルゴリズムについての理解が必要不可欠です. というわけで, この記事では文字列間の差分検出とは何かということと, 差分を求める三種類のアルゴリズムの紹介・解説
In this blog post I'm going to start exploring the topic of blur filters. My original intention was to… - Provide an overview and optimization ideas for a few of the popular real time image blur filters, applicable on very different range of hardware (from sub-4W mobile device GPUs to high end 250W+ desktop GPUs). - Give an example of the techniques that runs on Windows Desktop OpenGL and An
どうせ何度も使い回ししそうなので,独立した項目に切り離した. アルゴリズムイントロダクション 第3版 第1巻: 基礎・ソート・データ構造・数学 (世界標準MIT教科書) 作者: T.コルメン,R.リベスト,C.シュタイン,C.ライザーソン,浅野哲夫,岩野和生,梅尾博司,山下雅史,和田幸一出版社/メーカー: 近代科学社発売日: 2012/08/02メディア: 単行本購入: 1人 クリック: 16回この商品を含むブログ (21件) を見るアルゴリズムイントロダクション 第3版 第2巻: 高度な設計と解析手法・高度なデータ構造・グラフアルゴリズム (世界標準MIT教科書) 作者: T.コルメン,R.リベスト,C.シュタイン,C.ライザーソン,浅野哲夫,岩野和生,梅尾博司,山下雅史,和田幸一出版社/メーカー: 近代科学社発売日: 2012/12/26メディア: 単行本購入: 1人 クリック: 4回
この投稿では、以前に TinyKeepDev が こちら で述べたランダムなダンジョンを生成する技法について説明しようと思います。元の投稿に比べて、もう少し具体的に話を進めるつもりです。まずは、以下に示したアルゴリズムの一般的な動作をご覧ください。 部屋の生成 はじめに、幅と高さを持つ部屋を円の中にランダムに配置しましょう。TKdevのアルゴリズムは、各部屋のサイズを生成するのに正規分布を用いています。これは一般的にとてもいいアイデアです。なぜかと言うと、これによってより多くのパラメータを扱うことができるようになるからです。幅/高さの平均と標準偏差間の異なる比率を選ぶと、通常は見た目の違うダンジョンとなります。 ここで実行すべき関数は getRandomPointInCircle です。 function getRandomPointInCircle(radius) local t = 2
みなさん、こんにちは! 突然ですが…皆さんには、ひいきにしている ゲームのキャラクターはいらっしゃいますでしょうか。 手ごわいボス敵や頼れるパートナー、愛嬌のある動きをするモンスター達は 一体どのような仕組みで動いているのでしょう? 今回の記事ではそんなゲームの中のキャラクター達を 魅力的に動かす仕組み、AIについて御紹介したいと思います。 改めまして本記事を担当させて頂きます、Cygamesエンジニアの佐藤です。 これまでコンシューマ機でのゲームAI開発に携わり、 ゲームならではのキャラクター表現の楽しさを追いかけてきました。 このブログを通じて、皆さんのゲームのキャラクターを より表情豊かに魅力的なものにする方法について、皆さんと一緒に考えていければ幸いです。 今回はゲームのAIをデザインするにあたって重要となる、 「知識表現を定義する」というステップと、 知識表現の一つである影響マッ
Overview PNG is an image format that has a history of development beginning in 1995, and it is still a popular, long living format. Generally, it is known for its features such as lossless compression and the ability to handle transparent pixels. However, we do not look at image formats from a general point of view, but rather think of ways to glitch them. When we look at PNG from the point of vie
The power of the unaided mind is highly overrated… The real powers come from devising external aids that enhance cognitive abilities. —Donald Norman Algorithms are a fascinating use case for visualization. To visualize an algorithm, we don’t merely fit data to a chart; there is no primary dataset. Instead there are logical rules that describe behavior. This may be why algorithm visualizations are
「はじめよう、シェル芸」オープンキャンプin南島原2020/OpenCamp in Minami-shimabara online
この記事の目的はKen Perlinの改良パーリンノイズを分かりやすく分析し、お伝えすることです。記事内のコードはC#で書かれており、自由にご利用いただけます。最終形のみを見たい方は、こちらから最終的なソースをご確認ください。 パーリンノイズは手続き的なコンテンツ生成によく使われる、非常に強力なアルゴリズムです。ゲームや、映画などの視覚媒体に特に有用です。パーリンノイズの開発者であるKen Perlinは、この最初の実装でアカデミー賞を受賞しました。彼が2002年に発表した改良パーリンノイズについて、私はこの記事で掘り下げていきます。パーリンノイズは、ゲーム開発においては、波形の類や、起伏のある素材、テクスチャなどに有用です。例えば手続き型の地形(Minecraftのような地形はパーリンノイズで生成できます)、炎のエフェクト、水、雲などにも使えます。これらのエフェクトのほとんどが2次元、3
I needed a really fast Gaussian blur for one of my projects. After hours of struggling and browsing the internet, I finally found the best solution. Beginning My solution is based on Fast image convolutions by Wojciech Jarosz. Presented ideas are very simple and I don't know who is the original author. I am going to describe it a little better and add some mathematics. To get motivated, take a gla
The following describes how to transform a standard lens distorted image into what one would get with a perfect perspective projection (pin-hole camera). Alternatively it can be used to turn a perspective projection into what one would get with a lens. To illustrate the type of distortion involved consider a reference grid, with a 35mm lens it would look something line the image on the left, a tra
Hi there! This webpage covers the space and time Big-O complexities of common algorithms used in Computer Science. When preparing for technical interviews in the past, I found myself spending hours crawling the internet putting together the best, average, and worst case complexities for search and sorting algorithms so that I wouldn't be stumped when asked about them. Over the last few years, I
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く