タグ

ブックマーク / statmodeling.hatenablog.com (3)

  • 統計・機械学習・R・Pythonで用途別のオススメ書籍 - StatModeling Memorandum

    比較的読みやすいを中心に紹介します。今後は毎年このページを更新します。 微分積分 高校数学をきちんとやっておけばそんなに困ることないような。偏微分とテイラー展開は大学演習のようなでしっかりやっておきましょう。ラグランジュの未定乗数法のような、統計・機械学習で必要になる部分は、ネット等で学べばいいかなと思っています。 線形代数 tensorflowなどのおかげで順伝播部分(行列積および行列とベクトルの積)さえ書ければ線形代数の知識はそこまでいらないんじゃないかという流れを感じます。しかし、主成分分析やトピックモデルなどの行列分解や、ガウス過程などのカーネル法のような様々なデータ解析の手法に一歩踏み込むと、きちんとした勉強が必要になります。理解しやすくて使いやすくて、統計や機械学習への応用を主眼においた線形代数のはまだ見たことないです。機械学習シリーズとかで基礎から「The Matrix

    統計・機械学習・R・Pythonで用途別のオススメ書籍 - StatModeling Memorandum
  • Python(PyStan)で「StanとRでベイズ統計モデリング」の5.1節を実行する - StatModeling Memorandum

    StanのPythonバインディングであるPyStanが公開されて久しいですが、検索してもあんまり情報がヒットしません。ちょっと寂しいと思ったので、インストールやtraceplotの出力なども含めて、以下のの5.1節「重回帰」の一部を実行してみました(ステマです)。 StanとRでベイズ統計モデリング (Wonderful R) 作者:健太郎, 松浦発売日: 2016/10/25メディア: 単行 自体の紹介は以前の記事を読んでいただければと思います。 「StanとRでベイズ統計モデリング」松浦健太郎 というを書きました - StatModeling Memorandum インストール Windows 7 64bitPython 3系でのインストール手順を説明します。 AnacondaでPythonなどをインストール コマンドプロンプトからpip install pystanでpy

    Python(PyStan)で「StanとRでベイズ統計モデリング」の5.1節を実行する - StatModeling Memorandum
  • 「StanとRでベイズ統計モデリング」松浦健太郎 という本を書きました - StatModeling Memorandum

    僕が筆者なので、この記事は書評ではなく紹介になります。まずこのはRのシリーズの一冊にもかかわらずStanという統計モデリングのためのプログラミング言語の方がメインです。このようなわがままを許してくれた、ゆるいふところの深い石田先生と共立出版には感謝しかありません。 StanとRでベイズ統計モデリング (Wonderful R) 作者:健太郎, 松浦発売日: 2016/10/25メディア: 単行 目次と概要 共立出版のページを見てください。GitHubのリポジトリもあります。 前提とする知識 「はじめに」の部分で触れていますが、確率と統計の基的な知識はある方、R(やPython)で簡単なデータ加工や作図が一通りできる方を想定しています。そのため、確率分布なんて聞いたことがない、プログラミングがはじめて、Rがはじめて、という方が読み進めるのは厳しいかもしれません。なお、Rの基的な関数し

    「StanとRでベイズ統計モデリング」松浦健太郎 という本を書きました - StatModeling Memorandum
  • 1