エントリーの編集

エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
The Anatomy of Hadoop I/O Pipeline (Hadoop and Distributed Computing at Yahoo!)
記事へのコメント0件
- 注目コメント
- 新着コメント
このエントリーにコメントしてみましょう。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています

- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
The Anatomy of Hadoop I/O Pipeline (Hadoop and Distributed Computing at Yahoo!)
Introduction In a typical Hadoop MapReduce job, input files are read from HDFS. Data are usually ... Introduction In a typical Hadoop MapReduce job, input files are read from HDFS. Data are usually compressed to reduce the file sizes. After decompression, serialized bytes are transformed into Java objects before being passed to a user-defined map() function. Conversely, output records are serialized, compressed, and eventually pushed back to HDFS. This seemingly simple, two-way process is in fact