
エントリーの編集

エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
不均衡データ分類問題をDNNで解くときの under sampling + bagging 的なアプローチ - BASEプロダクトチームブログ
記事へのコメント4件
- 人気コメント
- 新着コメント


人気コメント算出アルゴリズムの一部にヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
関連記事
不均衡データ分類問題をDNNで解くときの under sampling + bagging 的なアプローチ - BASEプロダクトチームブログ
はじめに こんにちは、Data Strategy所属の岡です。グループ会社BASE BANKで分析/モデリングなども兼務... はじめに こんにちは、Data Strategy所属の岡です。グループ会社BASE BANKで分析/モデリングなども兼務しています。 テキストデータを特徴量にもつ不均衡データ分類問題をDNNで解きたくなった際、下記の論文を参考にしたのでその内容を紹介します。 https://users.cs.fiu.edu/~chens/PDF/ISM15.pdf 不均衡データ分類問題ってなに? 何かしらのカテゴリを機械学習などで分類予測しようとする際、カテゴリごとのデータ件数に偏りがある、特に正例のデータが極端に少ないケースで予測精度が上がりにくい、という問題をこのように呼んでいます。 例: 不正決済と正常な注文、不正商品と健全な商品、がん患者と正常な患者 普通はどうやって対処するの? ベースとなるアプローチは下記3つにまとめられます。 アプローチ 内容 デメリット アンダーサンプリング 多数派データを