エントリーの編集
エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
【強化学習編】2022年に読むべき「機械学習/ディープラーニングの最新論文」30選 - Qiita
記事へのコメント0件
- 注目コメント
- 新着コメント
このエントリーにコメントしてみましょう。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
【強化学習編】2022年に読むべき「機械学習/ディープラーニングの最新論文」30選 - Qiita
はじめに 今回は強化学習編として、Transformer/BERTの発展モデルや新たな学習法・正則化方法の提案に関... はじめに 今回は強化学習編として、Transformer/BERTの発展モデルや新たな学習法・正則化方法の提案に関する内容などの最新論文を7本ご紹介します!著者実装が公開されているものは、その情報も併せてまとめました。論文は自動機械学習(AutoML)を専門としICMLなどのトップカンファレンスへの論文採択経験もある斉藤と、需要予測・異常検知など様々な分野で機械学習/ディープラーニングの産業応用に取り組んできた小縣が中心となってスキルアップAI講師陣にて厳選しました。ぜひ、今後の学びにご活用ください! CoBERL: Contrastive BERT for Reinforcement Learning 実装のURL:https://github.com/deepmind/dm_control 強化学習における新たなエージェント「Contrastive BERT for Reinforce