データのセットアップから解析、可視化やモデルのアウトプットまでを一気通貫で学習できます。全体を通じて、データ分析の「流れ」を掴むことを意識した講義設計となっております。

Googleの画像認識APIを基に、好きな画像を学習させて認識機能を簡単にカスタマイズできる「Cloud AutoML Vision」発表 Googleは、Googleが提供する学習済み機械学習APIを基に、ユーザーが自分のデータを学習させることで認識機能をカスタマイズできる「Cloud AutoML」を発表しました。 「Cloud AutoML」に対応したAPIの第一弾として、ユーザーが独自の画像を学習させられる「Cloud AutoML Vision」を発表しました。 学習済みの機械学習APIに対して追加で学習可能 Googleは、機械学習を用いた画像認識APIとして「Cloud Vision API」を以前から提供しています。 Cloud Vision APIはあらかじめGoogleによって学習済みであるため、画像を読み込ませるだけで、人間の顔の検出や猫や犬といった動物、船や飛行機、
ディープラーニング(深層学習)にもセキュリティ問題が存在する。データからルールを導き出す「訓練」に使用するデータに不正なものを紛れ込ませたり、認識に用いるデータにある種のノイズを加えたりすることで、AI(人工知能)に誤検出させようとする。AIの信頼性に関わる問題だけに、米Googleなどが対策に動き出している。 「AIが判断を間違えると、大変な問題を引き起こす恐れがある。AIをどうやって防御するかが、大きな課題になっている」。Googleに所属するAI研究者であるIan Goodfellow氏はそう語る。2017年10月にシリコンバレーで開催されたディープラーニングに関するカンファレンス「BayLearn 2017」でも、セキュリティ問題が大きなテーマになった。 GoogleのGoodfellow氏によれば、機械学習ベースの画像認識技術に対する攻撃手法には「アドバーサリアル・エグザンプル(
追記 (9月30日 22:00) Q : 本文も用いると更に良いのではないか A : 可能な限り氏が翻訳した記事を開きたくないため、タイトルだけを用いた Q : 深層学習ではない手法との比較がない A : 追加実験を行った。登場する語彙の上位 12,000 個の bag-of-words を用いたところ RandomForest (class_weight = 'balanced', n_estimators = 500) では精度 0.93 , 再現率 0.66, f値 0.78 LinearSVC (sklearn のデフォルトパラメタ) では精度 0.88, 再現率 0.81, f値 0.84 となり、深層学習とあまり差がないことがわかった。 Q : 理由は何か 単語の頻度足切りを変化させても精度が変わらないことから、特定の語に強く反応している可能性がある。または特定ジャンルの記事が
機械学習を利用して、Webサイトが抱えるクロスサイトスクリプティング(XSS)の脆弱性を自動検出する技術が登場した。Webサイト側でXSSへの対策を施していても、それをかいくぐって攻撃するパターンまで見つけてくれる。2017年9月上旬に開催されたイベント「PyCon JP 2017 in Tokyo」で、三井物産セキュアディレクションの高江洲勲(たかえすいさお)セキュリティエンジニアが発表した。 高江洲氏は趣味で機械学習を勉強しており、せっかくだから本業のセキュリティに生かせないかと考えた。背景にはセキュリティ技術者の圧倒的な人材不足がある。機械で脆弱性を検出できるようになれば、これまでセキュリティエンジニアの職人技に大きく依存していたセキュリティ診断を自動化できる。 最初からすべての脆弱性を検出できるようにするのは大変なので、とりあえずXSSに対象を絞ることにした。XSSは、悪意のあるユ
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? ディープラーニングは特定分野で非常に高い精度が出せることもあり、その応用範囲はどんどん広がっています。 しかし、そんなディープラーニングにも弱点はあります。その中でも大きい問題点が、「何を根拠に判断しているかよくわからない」ということです。 ディープラーニングは、学習の過程でデータ内の特徴それ自体を学習するのが得意という特性があります。これにより「人が特徴を抽出する必要がない」と言われたりもしますが、逆に言えばどんな特徴を抽出するかはネットワーク任せということです。抽出された特徴はその名の通りディープなネットワークの中の重みに潜在してお
ディープラーニング(深層学習)の技術研究会であるDeep Learning JPは9月6日、米MIT Pressが出版したディープラーニングの教科書『Deep Learning』の日本語翻訳版を専用サイトに一般公開した。製本版を発売する前にフィードバックを得ることが目的で、発売後は公開を終了するという。 『Deep Learning』は、Googleの人工知能研究プロジェクト「Google Brain」の研究者イアン・グッドフェローさんなどが書いたディープラーニングの入門書。deeplearningbook.orgで段階的に執筆・公開を始め、完成した原著を2016年12月に発売した。製本版の価格は約1万円で、引き続きサイトで無料公開も続けている。 日本語への翻訳は、東京大学の松尾豊研究室が主体として取り組んだという。松尾豊特任准教授は人工知能関連の研究者で、人工知能学会の倫理委員長を務める
おしっこセンサーできました ウチの小学生の息子が家のトイレでたびたびおしっこをこぼしてしまう。俺がくどくど注意してもあんまり効果ない。そこで、代わりにAIに怒ってもらうことにした。こんな感じである。 おしっこセンサーのデモ([動画](https://www.youtube.com/watch?v=ktSukhHdogM))。水を数滴床にたらすとブザーが鳴り、床を拭くと止まる。 ディープラーニングの画像認識を使い、床の上に落ちた水滴をカメラで検出してブザーが鳴る仕組みだ。夏休みの自由工作に過ぎないので精度は期待していなかったけど、意外にきちんと動いてくれて、カメラに映る範囲に水滴を数滴たらすとピッピと鳴り、床を拭くとブザーも止まる。「お父さんだってAIくらい作れるぞ」と息子に自慢したいがための工作なのだ。 でも、これ作るのはそんなに難しくなくて、休み中の3日くらいで完成した。かかったお金は、
Intelは米国時間8月28日、ドローン、仮想現実(VR)ヘッドセット、スマートカメラ、ウェアラブル、ロボットなど、エッジデバイスの処理機能を向上させる次世代VPU「Movidius Myriad X」を発表した。 MovidiusはIntelが2016年9月に買収した子会社で、さまざまなマシンやPC向けの視覚機能を開発している。今回発表されたシステムオンチップ(SoC)製品のMyriad Xは、専用の「Neural Compute Engine」を搭載し、エッジにおけるディープラーニングの推論をサポートする。 オンチップのハードウェアブロックであるNeural Compute Engineは、ディープニューラルネットワーク(DNN)を高速かつ低消費電力で動作させることに特化した設計となっている。Intelによると、このDNNアクセラレータは、DNNの推論において1秒間に1兆回以上の演算を
ラーメン店「ラーメン二郎」のラーメン画像を送り付けると、どこの二郎なのか答えてくれる――そんなTwitterのbotアカウントを開発したと、NTTコムウェアの技術者が8月10日、NTTグループ有志が主催する技術交流会「NTT Tech Conference #2」で発表した。正答率は約87%という。 ラーメン二郎は、関東を中心に約40店舗を展開している。店舗ごとにラーメンの味や見た目が少しずつ異なり、ネット上では「常連は見た目で店舗を見分けられる」という声もある。botのTwitterアカウント(@jirou_deep)は、ラーメン二郎の画像をリプライすると、可能性が高い店舗トップ3を答えてくれる。 「画像を見ても違いが分からなかった」――と、開発者・NTTコムウェアの土井賢治さん。土井さんの同僚が、ラーメン二郎4店舗の画像を自動識別する技術を作ったことがきっかけで、全店舗に対応した判別器
(編注:2016/11/17、記事を修正いたしました。) ディープラーニングの分野でテクノロジの進化が続いているということが話題になる場合、十中八九畳み込みニューラルネットワークが関係しています。畳み込みニューラルネットワークはCNN(Convolutional Neural Network)またはConvNetとも呼ばれ、ディープニューラルネットワークの分野の主力となっています。CNNは画像を複数のカテゴリに分類するよう学習しており、その分類能力は人間を上回ることもあります。大言壮語のうたい文句を実現している方法が本当にあるとすれば、それはCNNでしょう。 CNNの非常に大きな長所として、理解しやすいことが挙げられます。少なくとも幾つかの基本的な部分にブレークダウンして学べば、それを実感できるでしょう。というわけで、これから一通り説明します。また、画像処理についてこの記事よりも詳細に説明
By darkday AI(人工知能)が大きな話題となっているコンピューターサイエンスの世界で、その技術を支えているのが「ディープラーニング」です。一方、コンピューターを使った「機械学習」という言葉を耳にすることも多いものですが、実はその違いがよくわからない人も多いはず。そんな両者の違いを、数学的計算ソフトウェア「MATLAB」の開発元であるMathWorksが簡単に解説しています。 Introduction to Deep Learning: Machine Learning vs Deep Learning - YouTube 機械学習もディープラーニングも、学習モデルを提供してデータを分類することに使われる技術です。その働きを解説するのによく用いられるのが、犬と猫の画像を分類するという例。この画像の場合、ほぼ全ての人が左が犬、右が猫と答えるはず。 しかし、別の画像を持ってきた時、それ
1. はじめに 週刊少年ジャンプ(以下,ジャンプ)は,日本で最も売れている漫画雑誌1です.言うまでもなく,私は大ファンです. ジャンプ編集部の連載会議は非常にシビアです.ジャンプ作家の奮闘を描いたフィクション漫画「バクマン。」では,編集部が毎号の読者アンケートをもとに各漫画の人気を評価し,掲載順や打ち切り作品を決定する様子が描かれています2.連載開始から10週以内(単行本約1冊分)で連載が打ち切られてしまうことも珍しくありません.とても厳しい世界です. 本記事では,機械学習を使って,短命作品(10週以内に終了する作品)の予測を行います.究極の目標は,ジャンプ編集部より先に打ち切り作品を予測し,好みの作品が危ない場合はアンケートを出して打ち切りを回避することです3.我々は読者アンケートの結果を知ることができないので,掲載順の履歴を入力とし,短命作品か否かを出力する多層パーセプトロン4をTen
TensorFlowを勉強するにはスタンフォードのこの講義資料が良く出来ているぜ、と言われた。 http://web.stanford.edu/class/cs20si/syllabus.html へー、と思って読んでいたら、4日目の所のword2vecのスライドが良く分からない。 word2vecは以前深層学習の本で一通り読んだのだけどあんまりしっかり理解出来た気がしていなかったので、いい機会だ、とちょっとぐぐって解説でも読もうと思った。 これがさっぱり分からんのばかりひっかかる。 仕方ない、と元論文を読むと、大分理解は進んだが、幾つか分からない所がある。 うーん、どうしたもんかなぁ、と思っていた所、上記講義には参照として、別のコースへのリンクがあった。 そこのスライドが素晴らしい。 http://web.stanford.edu/class/cs224n/lectures/cs224n
AIエンジニアになる方法 How to change job to AI engineer. 2017.02.26 Updated by Ryo Shimizu on February 26, 2017, 15:03 pm JST AIに関することで、多くの研究者にとって不都合な真実が、まだ世間には理解されていません。 それは、AI研究者の大半は深層学習を専門にして「いない」ということです。 深層学習はAI研究の中では、機械学習という分野の、ニューラルネットワークという分野の、さらに一分野に過ぎません。 比率で言えば、95:5くらいの確率で、これまで「AIの専門家」と言われてきた人は深層学習の専門家「ではない」確率が高いわけです。 この些細な事実がなぜ「不都合」なのかというと、こうしてなにもかも一緒くたにされた結果、これまでほとんど成果の上げることができてなかった旧来のAI研究者に大量の予
「AI」「機械学習」「ディープラーニング」は、それぞれ何が違うのか:「ニューラルネットワーク」とは何か 「AI」「機械学習」「ディープラーニング」は、それぞれ何が違うのか。GPUコンピューティングを推進するNVIDIAが、これらの違いを背景および技術的要素で解説した。 米NVIDIAは2016年7月29日、公式ブログでテクノロジージャーナリストであるマイケル・コープランド氏による記事「人工知能、機械学習、ディープラーニングの違いとは」を公開した。今後のビジネスを変革すると期待される技術の1つとして、「AI(Artificial Intelligence:人工知能)」が注目を集めている。このAIは、「機械学習」や「ディープラーニング」とともに取り上げられることが多いことから、この3つの単語の意味や背景を整理して解説したものだ。以下、ブログ記事を抄訳する。 AI、機械学習、ディープラーニングの
「すごく賢いAIが存在」「ディープラーニングは最強」は誤り――AIに関する“10のよくある誤解”、ガートナーが発表 「すごく賢いAIがすでに存在する」「機械学習などを使えば、誰でもすぐに『すごいこと』ができる」――IT調査会社のガートナージャパンは12月22日、人工知能 (AI) に関する10個の「よくある誤解」を発表した。AIは現在「過度な期待」を受けているとした上で、日本企業は今後AI開発に必要な人材確保が難しくなる――などと予測している。 「すごく賢いAIは今のところ存在しない」 ガートナーによれば、経営者やテクノロジーにそれほど詳しくない人は「今のAIは、人間と同様のことができる」「今すぐにすごいことができる」と誤解している傾向があるという。 2016年、ガートナーには顧客から「どのAIが最も優れているか」などの質問が寄せられたという。同社はその背景に「すごいAIがすでに存在する」
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く