東京大学深層学習(Deep Learning基礎講座2022)https://deeplearning.jp/lectures/dlb2022/ 「深層学習と自然言語処理」の講義資料です。
はじめに: 本講座は「機械学習ってなんか面倒くさそう」と感じている プログラマのためのものである。本講座では 「そもそも機械が『学習する』とはどういうことか?」 「なぜニューラルネットワークで学習できるのか?」といった 根本的な疑問に答えることから始める。 そのうえで「ニューラルネットワークでどのようなことが学習できるのか?」 という疑問に対する具体例として、物体認識や奥行き認識などの問題を扱う。 最終的には、機械学習のブラックボックス性を解消し、所詮は ニューラルネットワークもただのソフトウェアであり、 固有の長所と短所をもっていることを学ぶことが目的である。 なお、この講座では機械学習のソフトウェア的な原理を中心に説明しており、 理論的・数学的な基礎はそれほど厳密には説明しない。 使用環境は Python + PyTorch を使っているが、一度原理を理解してしまえば 環境や使用言語が
はじめに 近年急速に進化しているGANの中でも、特に有名な物の一つであるStyleGANについて改めて勉強したいと思い、今回のテーマにしました。 前半は論文紹介として、StyleGANの構造や特徴について勉強した事をまとめます。 後半は、実際に学習済みのStyleGANを使って画像生成を試してみたので、その結果を書いていきます。 StyleGAN (v1) StyleGANは2018年に発表されました。(論文リンク) 以下はStyleGANで生成された画像例の引用ですが、本物の写真と見分けがつかないような高品質の画像が生成されていると思います。 以下、StyleGANの特徴を説明していきます。 generatorの構造 StyleGANの特徴は、主にgeneratorの構造にあると言っていいかと思います。 論文中の以下の図について、左側が従来のGAN(ここではPGGAN)のgenerato
この記事は何 せっかく Pythonで学ぶ強化学習 をざっと読んだので、手を動かしてみる大作戦です。 FlappyBird という数年前に話題になったゲームがあり、それを強化学習を用いて学習していきたいと思います。 のんびり動かしてみつつ、色々やったことを記録していこうと考えています FlappyBird で強化学習の練習 その0: 環境編 ← これ FlappyBird で強化学習の練習 その1: DQN FlappyBird で強化学習の練習 その2: Double DQN FlappyBird で強化学習の練習 その3: DQN + Dueling network この記事は、環境構築です。JupyterLab で動画を見るのに少し手間取ったため、残しておきます。 自分のローカルマシンである mac と、リモート環境である ubuntu で動作確認しています。 目次 FlappyBi
世間では、お正月が来たようです。 そこで、初詣に行ったついでに、賽銭箱の底をのぞいてみましょう! これいくら? こんな画像をパッと見て総額がわかれば、なにかと嬉しいのではないかと。大体でもいいので。 (たとえば神社さんの確定申告システムに直結するとか・・。) まぁ応用はさておき、いまどきの時代なので、AIに金額を数えさせてみましょう! しかし、コインが重なりあったりしてると難航しそうな予感。 というわけで、最初は 条件を単純化します。 このように、コインどうしが重なってないなら、ちょっとハードル下げられるかな? しかし日本の硬貨6種類(1円5円10円50円100円500円)全部を対象にしてやってみると、手元の環境の環境ではちょっとキビシいみたい。(モデルにもよるでしょうが・・) あ、手元の環境というのは、Google Colaboratory (略称:colab) のGPU版です。 (手元
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 2018年もいよいよ本日が最後となりました。皆さんいかがお過ごしでしょうか。この記事では機械学習/ディープラーニング初心者だった自分が2018年にやったことをまとめていきたいと思います。ポエムじみた記事になってしまいましたが、何らかの参考になれば幸いです。 2018年のBefore-After Before 今年(4月)ぐらいまで機械学習の「き」の字も知らなかった。k-Nearest Neighbor?Support Vector Machine?なにそれ美味しいのってレベル 昔統計をやっていたので、ロジスティクス回帰ぐらいは知っていた
ディープラーニングは習うより慣れろかも ファッションでディープラーニングをしているディープラーニング芸人からあげです。私は、特に専門家でも何でもないのですが、機械学習に興味もって、ディープラーニングに関することブログでアウトプットしているうちに「AIに関する本に名前がクレジットされたり」「AI解析のオンラインコンテスト#Aidemynoteで特別賞受賞したり」「ラズパイマガジンという商業誌にAI関係で記事を書いたり」「ディープラーニングおじさんの記事がバズったあげくITmediaで取り上げられたり」と多少なりとも価値を提供できるようになってきました。 何の知識もバックグラウンドも、大した能力も無い自分が、どうやって知識を身につけることができたかというと、色々本も読んだのですが、実際に手を動かしてプログラムを組んで、実問題に対して試行錯誤した結果をブログにアウトプットし続けたことが大きいのか
※実際記事で紹介する書籍は12冊ですが、メンバーが借りてオフィスになかったため、上記画像内に3冊ないものがあります。 はじめに AI Academyを開発・運営しています、株式会社エーアイアカデミー代表の谷です。 6ヶ月ほど前に書いた下記記事は約1200のいいねと7万viewsを超える記事になりました。 【保存版・初心者向け】独学でAIエンジニアになりたい人向けのオススメの勉強方法 お読み頂いた方々、またいいねして頂いた方々ありがとうございました! あれから6ヶ月ほど経ちまして、さらにPythonや機械学習の書籍が増えて参りましたので、改めて初心者向けにPythonと機械学習の良書12選を紹介し、初学者が独学でも機械学習プログラミングの基礎スキルUPに貢献できたらと思います。 また、AIプログラミングを作りながら学べるプログラミング学習サービスAI Academyを無料でご利用頂けますので
著作者:Harrison Jansma 英語の記事:https://towardsdatascience.com/how-to-learn-data-science-if-youre-broke-7ecc408b53c7 過去一年間、私は未経験からデータサイエンティストを目指して、データサイエンスを独学しました。 オンラインコースを毎日平均6~8時間勉強すると同時に、アルバイトをしていました。 過去数ヶ月で、大きなの成果をあげました。 自分のウェブサイトができあがって、そしてコンピュータサイエンス院生向けの奨学金を得ました。 本記事では、一年でデータサイエンスをどのように勉強したか、つまりデータサイエンスの勉強法と学習リソースを伝えていきます。すこしでもお役に立てればうれしいです。 この記事の「データサイエンス」とは、データによってあらゆる事柄を客観視するためのツール集合を指しています。
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 最近Bitcoinの方が流行っている印象を受けますが,ディープラーニングの勢いは依然強く,Google Trendを見ても未だに検索数は上昇傾向にあるように見えます. 実際体験してみるとわかりますが,ディープラーニングはとんでもなく強力な機械学習の手法で,うまく使いこなせれば強力な武器になります.しかし,「ディープラーニングにはPhDが必要だ」「ディープラーニングは素人には学べない」といった幻想もちらほらあり,興味はあってもなかなかこの世界に飛び込めない人も多いのではないでしょうか? この記事の目的 この記事では筆者がディープラーニング
19日に行われた Kyoto.なんか #3 で発表・デモをさせていただいた内容まとめです。 はじめに: 検出器の重要性 アイドル顔識別 をずっとやっている中で、顔の識別・分類(Classification)はCNNを使って出来ているけれど まだ上手く出来ていない別のタスクがあって。 それが画像内からの顔領域の検出 (Detection, Localization)。 「画像内に写っている人物が誰であるか」を識別するためには、まずはその画像に写っている「顔」を検出する必要がある。 その検出された顔それぞれについて分類器にかけて「この顔は○○さん」「この顔は××さん」と分類していくことになるわけで。 分類器に与える入力画像を切り抜いて抽出するのにもまず顔領域を検出する必要があるし、その分類器を学習させるためのデータセットも、様々な画像から顔領域を検出して切り抜いてそれぞれに対してラベル付けする
概要 社内の勉強会用に「機械学習って何?どうやって使うの?」というテーマでまとめたものです。この記事の内容が他の方の役に立てたら嬉しいです。 機械学習 = AI? 機械学習は人工知能の一分野で、ディープラーニングは機械学習の一分野です。 ルールベース 多重If文や探査により多彩なパターンを網羅して、複雑な条件でも適切な出力がされるようにプログラムされているもの データのパターンや特徴を学習し、それをもとに未知のデータに対して何かしらの予測を出力する ディープラーニング データの特徴となる要素の取捨選択を自動で行うことができる、機械学習の手法の一つ 強化学習 ある環境において、 エージェントが状況を観測しながら行動することを繰り返し試行し、目的を達成するための最適な意思決定を学習するもの Point! ルールベースだと、例外が発生すると人が手でルールを書き換える必要があり、どんどんデータが増
はじめに DeepLearningで好きなアイドルグループの歌詞を自動生成してみました。 所要時間は、学習データ1万行ぐらい(文字数78815文字)で30分~1時間程かかりました。 使用ツール OS:Windows 言語:Python2 Pythonの環境:Anaconda 4.4.0(Windows)Python 2.7 version 64bit 歌詞取得ツール:Lyrics Master 2.4.8.1 他:コマンドプロンプト 学習データの取得 Lyrics Master 2.4.8.1を使いました。 黄緑色で囲まれた Lyrics Master 2.4.8.1 for Windows (ZIP)を選択 http://www.kenichimaehashi.com/lyricsmaster/ ここで好きなアイドルの歌詞を取得してきます。 ZIPで落とせたら、LyricsMaster.
1カ月ほど前から、東京大学の松尾研のディープラーニング公開講座に行っている。 ネットで募集していたのであわてて申し込んだら、とんでもない数の人が集まっていて熱気がすごい。学部生、院生、社会人、あわせて300人以上が同時に授業を受けている。 初回こそ、人工知能概論のような話だったけれど、2回目以降はものすごい速度で授業が進む。そして宿題の量と質もすごい。2回と3回目の授業だけで、普通の学校の半年分くらいの内容になっている気がする。東大、ほんとにやべーよ。 毎回、授業の冒頭は「ふんふん、そうか」とはじまるのだけれど、終わり間近に大量のサンプルコードを見せられて、それをすごい勢いで説明され、最後にゴツイ宿題が出る。授業終了後は、ポカーンってなる(授業中にぜんぶ理解しているひと、どれくらいいるんだろう)。 友人の物書堂の社長の広瀬くん(iPhone辞書アプリ開発の大御所!)も、たまたまいっしょに講
1. はじめに 週刊少年ジャンプ(以下,ジャンプ)は,日本で最も売れている漫画雑誌1です.言うまでもなく,私は大ファンです. ジャンプ編集部の連載会議は非常にシビアです.ジャンプ作家の奮闘を描いたフィクション漫画「バクマン。」では,編集部が毎号の読者アンケートをもとに各漫画の人気を評価し,掲載順や打ち切り作品を決定する様子が描かれています2.連載開始から10週以内(単行本約1冊分)で連載が打ち切られてしまうことも珍しくありません.とても厳しい世界です. 本記事では,機械学習を使って,短命作品(10週以内に終了する作品)の予測を行います.究極の目標は,ジャンプ編集部より先に打ち切り作品を予測し,好みの作品が危ない場合はアンケートを出して打ち切りを回避することです3.我々は読者アンケートの結果を知ることができないので,掲載順の履歴を入力とし,短命作品か否かを出力する多層パーセプトロン4をTen
はじめに 趣旨 個人的にディープラーニングや機械学習を学習したいと思い、O'Reilly Japanさんから出版されているゼロから作るDeep Learningを読みました。 しかし、私自身に知識がなく、いまいちピンとこなかったので、簡単なものを作ってみようと考えました。 とはいえ、せっかくなら自分の趣味でもある麻雀に関わるところで作ろうと考えました。 筆者のスペック Python、機械学習ともに初心者 普段はPHPやRubyを使ったWebのお仕事 環境 Python 3.6.0 bottle 0.12.13 heroku 機能概要 作成したアプリは下記になります。 https://python-mahjang.herokuapp.com/index また、ソースコードは下記になります。 https://github.com/naoki85/python_mahjong 配牌と結果のみを学
プログラミング言語「Python」は機械学習の分野で広く使われており、最近の機械学習/Deep Learningの流行により使う人が増えているかと思います。一方で、「機械学習に興味を持ったので自分でも試してみたいけど、どこから手を付けていいのか」という話もよく聞きます。本連載「Pythonで始める機械学習入門」では、そのような人をターゲットに、Pythonを使った機械学習について主要なライブラリ/ツールの使い方を中心に解説していきます。 連載第1回となる前回の「Pythonで機械学習/Deep Learningを始めるなら知っておきたいライブラリ/ツール7選」では、ライブラリ/ツール群の概要を説明しました。今回は、その中でもJupyter Notebookの基本操作と設定について説明します。なお、本稿では、Pythonのバージョンは3.x系であるとします。 Jupyter Notebook
【最終更新 : 2017.12.17】 ※以前書いた記事がObsoleteになったため、2.xできちんと動くように書き直しました。 データ分析ガチ勉強アドベントカレンダー 17日目。 16日目に、1からニューラルネットを書きました。 それはそれでデータの流れだとか、活性化関数の働きだとか得るものは多かったのですが、Kerasと言うものを使ってみて、何て素晴らしいんだと感動してしまいました 今まで苦労して数十行書いていたものが、わずか3行で書ける! 正直、スクラッチで書く意味って、理解にはいいけど研究や分析には必要あんまないんですよね。車輪の再発明になるし。 と言うわけで、使えるものはどんどん使っていこうスタンスで、今日はKerasの紹介です! Tutorial+気になった引数を掘り下げて補足のような感じで書いています。 ちなみに、各部のコード以下をつなぎ合わせるとmnistの分類器が動くよ
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く