タグ

まとめと数学に関するkutekenのブックマーク (2)

  • 数学を勉強することの意味――「1+1」の思想 - on the ground

    勉強することの意味を尋ねられたらどう答えようかな、などとはよく考えることがあるけれども、今日は特に数学に限定して考えてみようか。先日、数学を勉強するのは論理的思考を養うためだという旨の説明を横耳で聞く機会があって、それも一つの説明だろうなとは思いながら、ただそれだと国語との差別化が難しくなるだろうと感じていた(実際、その人は数学≒国語だと結論したのである)。 他の説明(説得?)の仕方としては、数学は現に「必要」になるし「役に立つ」んだということを示す方法や*1、数学は意味など無くても単純に楽しいものなんだよと見せつけるアプローチなどがあるのだろう*2。ただ、これらは誰にでも当てはまるわけではないという意味で、論理的思考の訓練であるという説明に比して汎用性は低いように思う。そこで、一種のトレーニングのためであるという説明の方向性を維持しつつ、国語とは区別された数学の独自性を損なわない形で論を

    数学を勉強することの意味――「1+1」の思想 - on the ground
  • 何故私は計算が小学校で一番速かったのか? - やねうらおブログ(移転しました)

    小学校のころ、私は四則演算が学校で一番速く出来た。そんな私だが、実は九九はほとんど覚えていなかった。 掛け算や割り算を速く行なうのに必要なのは九九じゃないことを私は知っていたからだ。 簡単な例を出そう。あなたは、40÷6をどうやって計算するだろうか? 九九を持ち出してきて、「6×8 = 48 あれ、大きすぎたか。6×7 = 42、ありゃ、まだ大きいか。6×6 = 36。おお、40より小さくなった。40-36 = 4だから、6余り4が答え!」なんてやらないだろうか。これは凄く無駄な作業だ。どう考えてもやり方がおかしい。 ここで必要なのは、九九ではなく、36〜41は、6で割ったら商は6という知識である。「余り」もセットにして覚えてあるとなお良い。 「÷6」をするとき、割られる数が60以上であることは考えなくて良い。また、もう少し一般化して言えば、「÷N」するときは、割られる数がN*10以上であ

    何故私は計算が小学校で一番速かったのか? - やねうらおブログ(移転しました)
    kuteken
    kuteken 2009/05/07
    いろんな解き方があって、それが自分に合っていればいいと思う。僕も計算の仕方はおかしい。普通の筆算の割り算ができない。なぜなら、頭の中で5や10のブロックに分けて、きれいに揃うように計算をするからだ。
  • 1