ここでは線形代数において,固有値,固有ベクトルなるもの考える重要性を視覚的に理解するために,2次元ユークリド空間上のベクトルを例にとり,線形写像によってどのように変換されるのか具体的に見てみましょう。 結論を一言で言うと,”ほとんど” の線形写像はベクトルの”引き伸ばし(倍率が1以下ならば縮小)”と考えることができ,その引き伸ばしの方向を決めているのが固有ベクトルで倍率が固有値です。ただし,この様子は実数の世界で完全に捉えることは不可能で,複素数の世界において可能となります。 1.引き伸ばしと回転 [1] まず,線形写像: T(r ):r → v ( v =Tr ) を表す行列Tが対角行列で表せるとき,この写像が幾何学的にどのような意味をもつのか考えて見ましょう。 [ケース1] T(r)を表す行列を,
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く