タグ

logicとmathematicsに関するnabinnoのブックマーク (21)

  • Necessity and sufficiency - Wikipedia

    This article is about the formal terminology in logic. For causal meanings of the terms, see Causality. For the concepts in statistics, see Sufficient statistic. "Necessary But Not Sufficient" redirects here. For the novel by Eliyahu Goldratt, see Necessary But Not Sufficient (novel). In logic and mathematics, necessity and sufficiency are terms used to describe a conditional or implicational rela

    Necessity and sufficiency - Wikipedia
  • Equational logic - Wikipedia

  • 同値 - Wikipedia

    二つの条件 p 、q に対して、「 p を満たすものは全て q も満たす 」 というとき、「 p は q である為の十分条件である 」 あるいは 「 q は p である為の必要条件である 」 という。 また、「 p は q である為の十分条件であり、q は p である為の十分条件である 」 というとき、「 p は q である為の必要十分条件である 」 あるいは 「 p と q とは同値である 」 という。 例 1[編集] ある数が4の倍数である為には、その数は少なくとも偶数である必要がある。つまり、偶数であることは、4の倍数である為の必要条件である。ただし、偶数であっても、必ずしも4の倍数であるとは限らない。 また、ある数が4の倍数である為には、その数が8の倍数であれば十分である。つまり、8の倍数であることは、4の倍数である為の十分条件である。ただし、その数が8の倍数でなくとも、必ずしも4

  • 線形論理 - Wikipedia

    線形論理(せんけいろんり、英: Linear logic)は、「弱化(weakening)規則」と「縮約(contraction)規則」という構造規則を否定した部分構造論理の一種である。「資源としての仮説 (hypotheses as resources)」という解釈をする。すなわち、全ての仮説は証明において「一回だけ」消費される。古典論理や直観論理のような論理体系では、仮説(前提)は必要に応じて何度でも使える。例えば、A と A ⇒ B という命題から A ∧ B という結論を導出するのは、次のようになる。 A と A ⇒ B を前提とするモーダスポネンス(あるいは自然演繹でいう含意の除去)により、B が得られる。 前提 A と (1) の論理積から A ∧ B が得られる。 これをシークエントで表すと、A, A ⇒ B ⊢ A ∧ B となる。上記の証明ではどちらの行でも、A が真であ

  • 二階述語論理 - Wikipedia

    二階述語論理(にかいじゅつごろんり、英: second-order predicate logic)あるいは単に二階論理(にかいろんり、英: second-order logic)は、一階述語論理を拡張した論理体系であり、一階述語論理自体も命題論理を拡張したものである[1]。二階述語論理もさらに高階述語論理や型理論に拡張される。 一階述語論理と同様に議論領域(ドメイン)の考え方を使う。ドメインとは、量化可能な個々の元の集合である。一階述語論理では、そのドメインの個々の元が変項の値となり、量化される。例えば、一階の論理式 ∀x (x ≠ x + 1) では、変項 x は任意の個体を表す。二階述語論理は個体の集合を変項の値とし、量化することができる。例えば、二階の論理式 ∀S ∀x (x ∈ S ∨ x ∉ S) は、個体の全ての集合 S と全ての個体 x について、x が S に属するか、あ

  • ブール論理 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "ブール論理" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2023年8月) ブール論理(ブールろんり、英: Boolean logic)は、古典論理のひとつで、その名称はブール代数ないしその形式化を示したジョージ・ブールに由来する。 リレーなどによる「スイッチング回路の理論」として1930年代に再発見され(論理回路#歴史を参照)、間もなくコンピュータに不可欠な理論として広まり、今日では一般的に使われている。 項目では、集合代数を用いて、集合、ブール演算、ベン図、真理値表などの基的解説とブール論理の応用について解説する。ブール代数の記

    ブール論理 - Wikipedia
  • 様相論理 - Wikipedia

    様相論理(ようそうろんり、英: modal logic)は、いわゆる古典論理の対象でない、様相(modal)と呼ばれる「〜は必然的に真」や「〜は可能である」といった必然性や可能性などを扱う論理である(様相論理は、部分の真理値からは全体の真理値が決定されない内包論理の一種と見ることができる)。 その歴史は古くアリストテレスまで遡ることができる[1]:138が、形式的な扱いは数理論理学以降、非古典論理としてである。 様相論理では一般に、標準的な論理体系に「~は必然的である」ことを意味する必然性演算子と、「~は可能である」ことを意味する可能性演算子のふたつの演算子が追加される。 真理論的様相と認識論的様相[編集] 様相論理は真理論的(形而上学的、論理的)様相の文脈で語られることが最も多い。この様相においては「~は必然的である」、「~は可能である」といった言明が扱われるが、これは認識論的様相と混同

  • かかってこいや!「1=2の証明」 - アジマティクス

    です。アンサイクロペディアにもそう書いてあります。 1=2 - アンサイクロペディア 内容はタイトルの通り、「とは等しい」ということをあの手この手で証明してみた記事なのですが、それにしてもこの記事が面白いのです。もちろん、数学的には一つ残らず間違っているわけですが、「どこが、なぜ間違っているのか」を考えるととても勉強になるような項目もあって、間違いだからといって簡単には見過ごせません。 よっしゃ! だったら片っ端から間違いを指摘してやる! かかってこいや! タイプに分類 間違いはいくつかのタイプに分類されるように見えます。ひとまず記事に書かれている順番通りに見ていきましょう。 タイプ1 四捨五入を利用した証明[編集] 1.45を小数第2位で四捨五入すると 1.5 これを小数第1位で四捨五入すると 2 ……A 一方、1.45を小数第1位で四捨五入すると 1 ……B A、Bより 1.45 =

    かかってこいや!「1=2の証明」 - アジマティクス
  • 命題論理 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "命題論理" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2014年3月) 命題論理(めいだいろんり、()英: propositional logic)とは、数理論理学(記号論理学)の基礎的な一部門であり[1]、命題全体を1つの記号に置き換えて単純化し、論理演算を表す記号(論理記号・論理演算子)を用いて、その命題(記号)間の結合パターンを表現・研究・把握することを目的とした分野のこと。ブール論理はブール代数で形式化され2値の意味論を与えられた命題論理とみることができる。 命題を1つの記号で大まかに置き換える命題論理に対して、命題の述語(P

  • 決定可能性 - Wikipedia

    決定可能(けっていかのう、英: decidable)は、数理論理学または現代論理学において、論理式の集合のメンバーシップの決定をする実効的(effectiveな)方法が存在することを指す。決定可能性(けっていかのうせい、英: decidability)は、そのような属性を指す。命題論理のような形式体系は、論理的に妥当な論理式(または定理)の集合のメンバーシップを実効的に決定できるなら、決定可能である。ある決まった論理体系における理論(論理的帰結で閉じている論理式の集合)は、任意の論理式がその理論に含まれるか否かを決定する実効的方法があれば、決定可能である。そうでなければ、決定不能である。 計算可能性との関係[編集] 決定可能集合の概念と同様、決定可能な理論や論理体系の定義は、「実効的方法 (effective method)」や「計算可能関数 (computable function)」に

  • 論証 - Wikipedia

    論証(ろんしょう、英: argument)とは、論理学の用語で、前提(premises)と呼ばれる宣言的文の集まりと結論(conclusion)と呼ばれる宣言的文から構成され、前提群から結論が真であることが導き出せることを主張したものである。そのような論証には、妥当なものと妥当でないものがある。なお、個々の宣言的文は真(true)か偽(false)かで判断されるが、論証は妥当(valid)か妥当でない(invalid)かで判断される。英語では、宣言的文をstatementや命題(proposition)と呼んでいたが、最近では哲学的な含意を避けるためsentenceと呼ぶことが多い。 妥当性[編集] 妥当な論証は、特定の形式に従ったものである。妥当でない論証は、特定の形式に従っていない。 ある論証が妥当であっても、その結論が真であるとは限らない。前提が偽であっても、論証形式自体は妥当なこと

  • 一階述語論理 - Wikipedia

    一階述語論理(いっかいじゅつごろんり、英: first-order predicate logic)とは、個体の量化のみを許す述語論理 (predicate logic) である。述語論理とは、数理論理学における論理の数学的モデルの一つであり、命題論理を拡張したものである。個体の量化に加えて述語や関数の量化を許す述語論理を二階述語論理(英: second-order predicate logic)と呼び、さらなる一般化を加えた述語論理を高階述語論理(英: higher-order predicate logic)という。項では主に一階述語論理について解説する。二階述語論理や高階述語論理についての詳細はそれぞれの記事を参照。 概要[編集] 命題論理との差異[編集] 命題論理では文を構成する最も基的な命題(原子命題)は命題記号と呼ぶ一つの記号によって表していた。それに対し、一階述語論理に

  • Recursion - Wikipedia

    A visual form of recursion known as the Droste effect. The woman in this image holds an object that contains a smaller image of her holding an identical object, which in turn contains a smaller image of herself holding an identical object, and so forth. 1904 Droste cocoa tin, designed by Jan Misset Recursion occurs when the definition of a concept or process depends on a simpler or previous versio

    Recursion - Wikipedia
  • 数理論理学 - Wikipedia

    数理論理学(すうりろんりがく、英 : mathematical logic)または現代論理学[1][2]、記号論理学[1][2]、数学基礎論[3]、超数学[4]は、数学の分野の一つであり[4]、「数学の理論を展開する際にその骨格となる論理の構造を研究する分野」を指す[3][注 1]。数理論理学(数学基礎論)と密接に関連している分野としては計算機科学[4]や理論計算機科学などがある[注 2][注 3]。 数理論理学の主な目的は形式論理の数学への応用の探求や数学的な解析などであり、共通課題としては形式体系の表現力や形式証明系の演繹の能力の研究が含まれる。 数理論理学はしばしば集合論、モデル理論、再帰理論、証明論の4つの領域に分類される。これらの領域はロジックのとくに一階述語論理や定義可能性に関する結果を共有している。計算機科学(とくにACM Classification(英語版)に現れるもの)

    数理論理学 - Wikipedia
  • 論理和 - Wikipedia

    P ∨ Q のベン図による表現 数理論理学において論理和(ろんりわ、英: logical disjunction)とは、与えられた複数の命題のいずれか少なくとも一つが真であることを示す命題を作る論理演算である。離接(りせつ)、選言(せんげん)とも呼ぶ。 二つの命題 P, Q に対する論理和は記号 ∨ を用いて P ∨ Q と表せる。この記号はラテン語で(非排他的)論理和を意味する vel の頭文字に由来する[1]。また P ∨ Q の形をした命題を選言命題(disjunctive proposition)、その中に現れる命題 P や Q を選言肢(disjunct)という[2]。 例[編集] 「私の身長は 160 cm 以上である」 「私の体重は 50 kg 以上である」 の二つの命題の論理和は、 「私の身長は 160 cm 以上か、または、私の体重は 50 kg 以上である」 となる。こ

    論理和 - Wikipedia
  • Sheffer stroke - Wikipedia

    Logical equivalences[edit] The Sheffer stroke of and is the negation of their conjunction Alternative notations and names[edit] Peirce was the first to show the functional completeness of non-conjunction (representing this as ) but didn't publish his result.[2][3] Peirce's editor added ) for non-disjunction[citation needed].[3] In 1911, Stamm was the first to publish a proof of the completeness of

    Sheffer stroke - Wikipedia
  • Prolog - Wikipedia

    Prolog(プロログ)は論理プログラミング言語の一つであり、該当分野で最もよく知られている論理型言語の代表格である。主に人工知能研究や計算言語学との関連性を持つ。定理証明、エキスパートシステム、自動計画、自然言語処理とも繋がりが深い。形式論理である一階述語論理を基礎にして、事実群と規則群の表現および関係の観点に立った宣言型パラダイムに準拠しており、その関係に則った質問によって計算が開始されるという性質を持つ。 Prologは、1972年にマルセイユ大学のアラン・カルメラウアーとフィリップ・ラッセルによって開発された。フランス語の「programmation en logique」がその名の由来である[1]。Prologの誕生にはエディンバラ大学のロバート・コワルスキが考案したホーン節が大きく寄与している。カルメラウアーによる元祖版はマルセイユPrologと呼ばれている。その後、コワルスキ

  • 順列 - Wikipedia

    この項目では、順列について説明しています。初等組合せ論における permutationについては「置換」をご覧ください。 数え上げ数学における順列(じゅんれつ、英: sequence without repetition, partial permutation、仏: arrangement)は、区別可能な特定の元から有限個を選んで作られる重複の無い列をいう[1]。 初等組合せ論における「写像12相」はともに 有限集合から k-個の元を取り出す方法として可能なものを数え上げる問題に関するものである[2]。取り出す順番を勘案するのが k-順列、順番を無視するのが k-組合せである。 定義[編集] 定義 1 位数 n の有限集合 E と自然数 k に対し、E の元からなる k-順列とは {1, 2, …, k} から E への単射を言う。 定義 2 位数 n の有限集合 E と自然数 k に対

  • 論理積 - Wikipedia

    「∧」はこの項目へ転送されています。類似字形のダイアクリティカルマークについては「サーカムフレックス」を、校正記号については「キャレット」を、ギリシア文字の「ラムダ」については「Λ」をご覧ください。 数理論理学において論理積(ろんりせき、英: logical conjunction)とは、与えられた複数の命題のいずれもが例外なく真であることを示す論理演算である。合接(ごうせつ)、連言(れんげん、れんごん)とも呼び、ANDとよく表す。 二つの命題 P, Q に対する論理積を P ∧ Q と書き、「P かつ Q」や「P そして Q」などと読む。また P ∧ Q の形をした命題を連言命題(conjunctive proposition)、その中に現れる命題 P や Q を連言肢(conjunct)という[1]。 ベン図による 論理積 の表現 例[編集] 「私の身長は 160 cm 以上である」

    論理積 - Wikipedia
  • 排他的論理和 - Wikipedia

    「XOR」は論理演算について説明しているこの項目へ転送されています。論理回路については「XORゲート」をご覧ください。 ベン図による排他的論理和 排他的論理和(はいたてきろんりわ、英: exclusive or / exclusive disjunction)とは、ブール論理や古典論理、ビット演算などにおいて、2つの入力のどちらか片方が真でもう片方が偽の時には結果が真となり、両方とも真あるいは両方とも偽の時は偽となる演算(論理演算)である。XOR、EOR、EX-OR(エクスオア、エックスオア、エクソア)などと略称される。 表記法[編集] 中置演算子のある体系では、中置演算子を利用した中置記法により表記されることが多い。演算子は (Unicode: U+22BB ⊻)、。誤解のおそれがないときは、XOR、xor、 (Unicode: U+2295 ⊕)、+、≠ なども使われる。 論理学などで

    排他的論理和 - Wikipedia