Keras動かせたから何かそこらにあるものを対象にできないかと、Raspberry Piの純正カメラモジュールを使って、定番の画像分類をやってみた。 RasPi OneでTensorflow/Kerasを動かす。で使ったKerasのClassify ImageNet classes with ResNet50にPicameraの出力を渡しているだけです。 カメラモジュール: PiNoIR Camera Module オリジナルのものです。今はVer.2になってます。 ## サンプルコード import io import time import picamera import picamera.array import cv2 from keras.applications.resnet50 import ResNet50 from keras.preprocessing.image im
 
      
   
    ![[Keras/TensorFlow] KerasでTensorBoardの利用 - Qiita](https://cdn-ak-scissors.b.st-hatena.com/image/square/405852bdc9ee493d1e75c006b7e82ad7edcc8952/height=288;version=1;width=512/https%3A%2F%2Fqiita-user-contents.imgix.net%2Fhttps%253A%252F%252Fqiita-user-contents.imgix.net%252Fhttps%25253A%25252F%25252Fcdn.qiita.com%25252Fassets%25252Fpublic%25252Farticle-ogp-background-afbab5eb44e0b055cce1258705637a91.png%253Fixlib%253Drb-4.0.0%2526w%253D1200%2526blend64%253DaHR0cHM6Ly9xaWl0YS11c2VyLXByb2ZpbGUtaW1hZ2VzLmltZ2l4Lm5ldC9odHRwcyUzQSUyRiUyRnFpaXRhLWltYWdlLXN0b3JlLnMzLmFtYXpvbmF3cy5jb20lMkYwJTJGMTc1MDkyJTJGcHJvZmlsZS1pbWFnZXMlMkYxNDkxOTY1NTQzP2l4bGliPXJiLTQuMC4wJmFyPTElM0ExJmZpdD1jcm9wJm1hc2s9ZWxsaXBzZSZiZz1GRkZGRkYmZm09cG5nMzImcz1mYzdmZGQxOTY1YzRlY2I2OTA3YjIxMWY2OGE3YjZhMQ%2526blend-x%253D120%2526blend-y%253D467%2526blend-w%253D82%2526blend-h%253D82%2526blend-mode%253Dnormal%2526s%253D087cc3613eb2eb54bed820b66db40323%3Fixlib%3Drb-4.0.0%26w%3D1200%26fm%3Djpg%26mark64%3DaHR0cHM6Ly9xaWl0YS11c2VyLWNvbnRlbnRzLmltZ2l4Lm5ldC9-dGV4dD9peGxpYj1yYi00LjAuMCZ3PTk2MCZoPTMyNCZ0eHQ9JTVCS2VyYXMlMkZUZW5zb3JGbG93JTVEJTIwS2VyYXMlRTMlODElQTdUZW5zb3JCb2FyZCVFMyU4MSVBRSVFNSU4OCVBOSVFNyU5NCVBOCZ0eHQtYWxpZ249bGVmdCUyQ3RvcCZ0eHQtY29sb3I9JTIzMUUyMTIxJnR4dC1mb250PUhpcmFnaW5vJTIwU2FucyUyMFc2JnR4dC1zaXplPTU2JnR4dC1wYWQ9MCZzPTg1MzhmMWZjN2NiNDFiMmEyZTM1N2U1MTdjYzM1NzEy%26mark-x%3D120%26mark-y%3D112%26blend64%3DaHR0cHM6Ly9xaWl0YS11c2VyLWNvbnRlbnRzLmltZ2l4Lm5ldC9-dGV4dD9peGxpYj1yYi00LjAuMCZ3PTgzOCZoPTU4JnR4dD0lNDBhZ3Vtb24mdHh0LWNvbG9yPSUyMzFFMjEyMSZ0eHQtZm9udD1IaXJhZ2lubyUyMFNhbnMlMjBXNiZ0eHQtc2l6ZT0zNiZ0eHQtcGFkPTAmcz01MmU1MGE3NmNjYzA3NDFlMmQ0ZjQwMzQwNWU2MzgyZA%26blend-x%3D242%26blend-y%3D480%26blend-w%3D838%26blend-h%3D46%26blend-fit%3Dcrop%26blend-crop%3Dleft%252Cbottom%26blend-mode%3Dnormal%26s%3Dff0596909c813d809dc49198d986d2d3) 
       
       
       
       
       
       
       
       
       
       
      ![学習時間評価 その3 (NVIDIA Tesla V100) [TensorFlowでDeep Learning 18] - Qiita](https://cdn-ak-scissors.b.st-hatena.com/image/square/6428522ba11bd43b2322476def63c4d6a044f8c1/height=288;version=1;width=512/https%3A%2F%2Fqiita-user-contents.imgix.net%2Fhttps%253A%252F%252Fcdn.qiita.com%252Fassets%252Fpublic%252Farticle-ogp-background-412672c5f0600ab9a64263b751f1bc81.png%3Fixlib%3Drb-4.0.0%26w%3D1200%26mark64%3DaHR0cHM6Ly9xaWl0YS11c2VyLWNvbnRlbnRzLmltZ2l4Lm5ldC9-dGV4dD9peGxpYj1yYi00LjAuMCZ3PTk3MiZoPTM3OCZ0eHQ9JUU1JUFEJUE2JUU3JUJGJTkyJUU2JTk5JTgyJUU5JTk2JTkzJUU4JUE5JTk1JUU0JUJFJUExJTIwJUUzJTgxJTlEJUUzJTgxJUFFMyUyMCUyOE5WSURJQSUyMFRlc2xhJTIwVjEwMCUyOSUyMCU1QlRlbnNvckZsb3clRTMlODElQTdEZWVwJTIwTGVhcm5pbmclMjAxOCU1RCZ0eHQtYWxpZ249bGVmdCUyQ3RvcCZ0eHQtY29sb3I9JTIzMUUyMTIxJnR4dC1mb250PUhpcmFnaW5vJTIwU2FucyUyMFc2JnR4dC1zaXplPTU2JnM9Y2RkYzQxNGU1NGMyNGE1Njk5ZmJlYjUzNjBlZTI0Njg%26mark-x%3D142%26mark-y%3D57%26blend64%3DaHR0cHM6Ly9xaWl0YS11c2VyLWNvbnRlbnRzLmltZ2l4Lm5ldC9-dGV4dD9peGxpYj1yYi00LjAuMCZoPTc2Jnc9NzcwJnR4dD0lNDBrdW1vbmt1bW9uJnR4dC1jb2xvcj0lMjMxRTIxMjEmdHh0LWZvbnQ9SGlyYWdpbm8lMjBTYW5zJTIwVzYmdHh0LXNpemU9MzYmdHh0LWFsaWduPWxlZnQlMkN0b3Amcz1jN2E4YTQ3OWRhOThmMTE1ODNjODlhYjJkYjQ5NmEwOA%26blend-x%3D142%26blend-y%3D436%26blend-mode%3Dnormal%26txt64%3DaW4gTWVyY2FyaQ%26txt-width%3D770%26txt-clip%3Dend%252Cellipsis%26txt-color%3D%25231E2121%26txt-font%3DHiragino%2520Sans%2520W6%26txt-size%3D36%26txt-x%3D156%26txt-y%3D536%26s%3D9c3c79f70fcaf3f70d9535de8c4ab882) 
       
       
       
       
       
       
      

