タグ

ブックマーク / active-galactic.hatenablog.com (29)

  • 重力波天文学がはじまる - Active Galactic : 11次元と自然科学と拷問的日常

    ブラックホールの衝突に伴う重力波が観測されたというニュースが世界中を駆け巡った。洞窟に残された簡素な暦にはじまる天文学3万年の歴史においても特別な瞬間だ。 今から約400年前,ガリレオが望遠鏡という発明品を使って天体観測を行い,肉眼の限界を超えた宇宙の深淵に至る扉を開いた。近代天文学の到来である。人類が知る宇宙は劇的に広くなった。 今から約100年前,可視光以外の電磁波を観測する望遠鏡がまったく異なる宇宙を人類に見せた。ブラックホール ,分子雲,星間磁場,さまざまなものに満ちた宇宙,20世紀を特徴づける全波長天文学のはじまりである。20世紀末には光子以外の粒子を使った天体観測も急速に発達した。 そしてついに究極の透過力を誇る重力波を使った新たな宇宙観測への扉が開かれた。 LIGOで観測された重力波 A. 重力波はどんなものか まず,電磁波を既知として,重力波がどのようなものか比較してみよう

    重力波天文学がはじまる - Active Galactic : 11次元と自然科学と拷問的日常
    nagaichi
    nagaichi 2016/02/15
    あーこれこれ。アインシュタインの残した宿題を約1世紀ぶりに片づけたってのもあるけど、新しい天文観測方法が確立できそうってのが大きいよねえ。
  • 人工知能:東大入試からシンギュラリティまで - Active Galactic : 11次元と自然科学と拷問的日常

    メディアや他の方がいくつか報告を上げているが、土曜日に『ロボットは東大に入れるか』の講演を聞きに行ったので気づいたことなどをメモしておこう。 人工知能にとっては、センター数学よりも東大二次数学の方が解きやすいことや、図形や文の構造を理解することがどうしようもなく難しいことなど、AIと人間の違いに関するいくつかの側面を興味深く受け取った。 「人間のように思考する」といった曖昧で高すぎる目標ではなく到達度を客観的に評価しやすい入試問題をターゲットに選んだのはよい着眼点だと思う。もし2021年までに、東大入試クラスの読解力や問題処理能力を獲得したならば、技術文書を要約したり、国会答弁を自動生成したり、様々な産業応用が可能になるだろう。 模試の結果はもっと惨憺たる有り様になると思っていたが、センター試験では 387/900、2次試験は(今回は数学のみだが)合格者平均を超えるなど、予想していたより結

    人工知能:東大入試からシンギュラリティまで - Active Galactic : 11次元と自然科学と拷問的日常
  • ヒッグス粒子をちゃんと理解するにはどのくらい必要? - Active Galactic : 11次元と自然科学と拷問的日常

    今回のノーベル物理学賞は大方の人に予想されたように、ヒッグス機構、あるいは特に貢献した人の名前をとってBrout-Englert-Higgs機構(以下BEH機構)に関するものだった。そのうちの一人であるBroutは残念ながら2011年に亡くなってしまったが、50年近い歳月を生き延びたEnglertとHiggsの2人が見事栄冠を勝ち取った。 「ものにはなぜ質量があるのか」という問いに対する重要な解答であり、実験的検証とその理論的な柱であるBEH機構は当然ノーベル賞に値する。 受賞自体に学術上の意味は無く、成人式のように予定された社会的通過儀礼だ。受賞したことで理論の精度が高まるわけではないし、2012年の「発見」も人間が決めた基準にすぎない。数日前と今で理論の輝きに変化はないが、それでも一区切りついたようで実に感慨深い。 標準理論:恐るべき理論の怪物 BEH機構は素粒子標準理論の重要な一角を

    ヒッグス粒子をちゃんと理解するにはどのくらい必要? - Active Galactic : 11次元と自然科学と拷問的日常
  • 陽子や中性子を素粒子として扱う業界ってどこにあるの? - Active Galactic : 11次元と自然科学と拷問的日常

    最近知ったことなのだが,どうも高校物理の教科書には原子核より下のすべての構造を「素粒子」としている記述があるようで困惑している。 例えば第一学習社の教科書には以下の様な記述がある。 電子,陽子,中性子などの粒子は,物質を構成する最小単位として,素粒子として呼ばれている。 陽子や中性子(核子)はクォークからなるが,素粒子と呼ばれることが多い。 第一学習社: また,啓文社啓林館の記述ではこうだ。 原子核より下の階層の粒子(核子やクォークなど)を素粒子と呼ぶ。 啓文社啓林館: 無論,「内部構造をもたずこれ以上分解できない究極の構成要素」としている教科書もある。この場合,クォーク,レプトン,ゲージ粒子,ヒッグス粒子のみが現在確認されている素粒子となる。 どうも教科書によって素粒子の定義がばらついているようだ。 研究の現場での定義 私が知る限り,陽子や中性子が素粒子と呼ばれていたのは何十年も前の話だ

    陽子や中性子を素粒子として扱う業界ってどこにあるの? - Active Galactic : 11次元と自然科学と拷問的日常
  • 金より高価な金属たちの世界 - Active Galactic : 11次元と自然科学と拷問的日常

    金は化学的な腐に強く非常な柔軟性を持った不滅の貴金属として、古くから貨幣や宝飾品として用いられて来た。現在の価格はグラムあたり3000円だが、密度が高いので扱った実感としては1ccあたり6万円というほうしっくりくる。サラリーマンの生涯賃金が100kg(5L)の金と同じぐらいというと高いのか安いのか微妙なところ。もし価格が1桁大きく生涯賃金と500ccペットボトルが等価だったらなんだか悲しくなるし、1/10の価格で1トン買えるようなら、「意外に安くね」という印象。 現在、金より高価な金属としてはプラチナが有名だ。グラム4500円といったところだが、金と違い昔から高かった訳ではない。20世紀初頭の万年筆や触媒需要として価格が数十倍に高騰するまでは、扱いも難しく使い道の無い金属だった。歴史上をみれば、古代には天から降ってきた金属(隕鉄)としてしか産出されなかった鉄が金の数倍の価格をつけていた時

    金より高価な金属たちの世界 - Active Galactic : 11次元と自然科学と拷問的日常
  • 数字が連続して並ぶ問題 - Active Galactic : 11次元と自然科学と拷問的日常

    今年の東大数学が面白い。恐怖の数字連続問題だ。 次のような自然数Aが存在することを示せ。 Aは連続する3つの自然数の積 Aを10進法で表記したとき、1が連続して99回以上並ぶところがある 受験生は誘導つきだったようだけど、時間のあるはてなー諸氏には不要だろう。誘導に囚われないことで別解も見つかっている。 これをみて以下の問題を思い出した。 √2を1億桁まで10進法表示する。このときどの数字も6000万個以上連続して並ぶことはないことを示せ。 『ピーター・フランクルの中学生でも分かる大学生にも解けない数学問題集』が出典で、文字通り中学生にも問題文が理解できる良問だ。命題が正しいことも想像がつく。しかし、証明にはそれなりの模索が要求される。 あとは、この問題が面白い。 pを任意の素数、mを任意の自然数とする。このとき自然数nをうまく選べば、p^nを10進法で表したときその数字列に0が連続してm

    数字が連続して並ぶ問題 - Active Galactic : 11次元と自然科学と拷問的日常
  • 銀河系を旅する彗星:太陽系の縁で起こっていること - Active Galactic : 11次元と自然科学と拷問的日常

    図0. 富士山とパンスターズ彗星 パンスターズ彗星(C/2011 L4)が、おそらくその生涯でもっとも明るくかがやいている。ヤツはまだ日没直後の西空にいるので、運が良ければ(図0)のような光景を肉眼で観測できる。 図1. パンスターズ彗星の見え方 かの彗星はすでに70km/s (時速25万km) をこえて太陽系脱出速度に達しており、星図上の位置を刻々と変えている(図1)。すでに近日点を通過し、太陽系に対して露払いとなるヘラクレス座の方角に進路をとりつつある*1。あとはひんやりとした星の海にむかうだけだ。遠い未来、宇宙のどこにたどりつくか知らないが、もう太陽系には二度ともどってこない。 彗星、星の海を渡る 図2. 太陽系外縁部の構造 惑星の外縁にエッジワース・カイパーベルトと呼ばれるリングがあり(紫)、全体を包み込むようにオールト雲が存在している(暗灰色)。 彗星は氷が出来るくらい太陽から離

    銀河系を旅する彗星:太陽系の縁で起こっていること - Active Galactic : 11次元と自然科学と拷問的日常
  • 現代技術でメタルスライム族を乱獲するには - Active Galactic : 11次元と自然科学と拷問的日常

    ドラゴンクエストIXの国勢調査によると、もっとも狩られているモンスターはメタルキングだ。その数は2億匹を越え、人類の強欲によっていかに簡単に生物が絶滅させられ……という話はさておき、現代でメタルスライム族を狩るとしたらどういう手法があるだろう。 磁場 導体が強磁場を横切ると誘導電流が発生して、大きな制動が生じる。水飴で満たしたようにうごきを鈍らせることができるかもしれない。 また、強力な磁石がまかれた場所を、高速で突破しようとすれば、天空に弾き飛ばされることになる。メタルボディには不快な環境だ。 鉄のように磁石にくっつく体質な場合、捕まえるのはより簡単になる。一方、デイン系でまったくダメージを受けないことから室温超伝導体だと仮定した場合*1、別の調理法がある。 液体金属脆化 水銀やガリウムなどの液体金属は、メタルスライム族にとって猛毒になりうるだろう。身体を侵蝕しボロボロにしてしまう可能性

    現代技術でメタルスライム族を乱獲するには - Active Galactic : 11次元と自然科学と拷問的日常
  • 温度とは何か:負の絶対温度をめぐる疑問など - Active Galactic : 11次元と自然科学と拷問的日常

    ひと月ほど前に流れた「負の絶対温度」のニュースに関して、興味をそそった反応をリストアップしておこう。 最初に、「永久機関が実現する!!!」みたいな反応は >/dev/null 2番目に、「負の温度がわからん」と言っている人がいる。ただ、このうち何パーセントが「正の温度」の定義を説明できるだろう。 3番目に、物理クラスターの一部だが、永久機関の実現といった誤解を打ち消すために、「レーザーの反転分布と同じ(笑)」などと、この研究の新奇性や研究グループ自体を過小評価する方々がいる。 この研究グループは、光格子を操ることにかけては世界最強クラスの実績がある。光格子における超流動Mott絶縁体転移や、量子気体顕微鏡による光格子1サイト内の原子観測といった、数々の偉業を達成している。また、多数の理論屋が在籍しており、理論面の基礎でミスを犯す可能性は低いだろう。既存体系を覆すような大発見ではないとはいえ

    温度とは何か:負の絶対温度をめぐる疑問など - Active Galactic : 11次元と自然科学と拷問的日常
  • 「質量に起源は必要か」 - 記者会見を控えた今、ヒッグス粒子を理解する - Active Galactic : 11次元と自然科学と拷問的日常

    【告知】2012年7月4日16時(JST)に、欧州原子核研究機構CERNがヒッグス粒子探索の最新結果について記者会見をするそうです。2011年末の発表では、”大変興味をそそる示唆”がみられたため、はるかに統計を増した今回の記者会見は期待が高まります。【ヤッター】 単純に「物には質量という生来のパラメタがある」で終わらせずに、複雑怪奇な「質量の起源」を外から持ってくるのはなぜだろう。 「前者のほうがはるかにシンプルな説明だ。何のために?」そう思うかもしれない。 ところで、わかりやすい説明は難しい? A. たぶん難しい。 何かの拍子に、質量の起源やヒッグス粒子に興味をいだいて検索すると、原子炉に穴を開けてしまったかのように、よくわからないものが次から次へと吹き出してきて困惑することになる。 式で書けば数行で正確に表現できても、式を解説するには何冊も必要になる。自然言語で手短に話せばポエティック

    「質量に起源は必要か」 - 記者会見を控えた今、ヒッグス粒子を理解する - Active Galactic : 11次元と自然科学と拷問的日常
    nagaichi
    nagaichi 2012/07/01
    喩え話のせいでかえって分かりにくくなってる気がする。
  • 太陽はどの方角に沈むか、任意の天体で - Active Galactic : 11次元と自然科学と拷問的日常

    大学生の25%が日没の方角を知らないというニュースだが、私も任意の天体における東西南北の定義をちゃんと把握していないので五十歩百歩だ。金星や天王星やトリトンみたいな例を即答できない。 北の定義とは? 何人が即答できるか 金星は自転と公転が逆だ。 (A)『一般に回転体の北極は角速度ベクトルの方向(その極からみると反時計回りに見える方向)として与えられる。自転軸(北)は公転面に対して177度傾いており、北極と南極の位置が地球からみて逆立ちしている。金星で太陽は西に沈む。』という解釈 (Fig1)が私にはしっくりくる。この北の定義は公転しない浮遊惑星にも適応できる。 Fig1. 金星と地球の自転公転関係 しかし、(B)『北極は公転面に対して地球と同じ側とする。自転軸の傾きは3度であり、周期マイナス243日の逆回転をしている。金星では太陽が西から昇って東に沈む。』みたいな解釈も見た記憶がある。北を

    太陽はどの方角に沈むか、任意の天体で - Active Galactic : 11次元と自然科学と拷問的日常
  • 宇宙の果てや加速膨張はどう観測されるか - Active Galactic : 11次元と自然科学と拷問的日常

    宇宙をのぞきこんだとき、最も深い世界はどう見えるだろうか。 Hubble Ultra Deep Field ちょうど2011年のノーベル物理学賞が『宇宙の加速膨張』になったので、現在観測される宇宙の全体像について簡単に触れてみよう。例えば次のような誤解を聞くが、実際はどうなのだろう。 誤解の例 同じ大きさの物体は遠くにあるほど小さく見える。 100億光年はなれた銀河は、100億年前に100億光年離れた場所にあった。 宇宙は光速で膨張している。 宇宙が2倍になると原子の大きさも2倍になる。 A. 超遠方宇宙の概要 宇宙といえど無限の奈落ではない。夜空を見上げた視線は観測可能な宇宙の果てにつきあたる。超遠方の天体は宇宙の果てに近いほど次の性質を示す。 若い 赤い 時の流れが遅い 大きく見える 暗い A1. 遠い宇宙は若い 遠い宇宙は太古の宇宙だ。遠い宇宙から地球に光が届くのには時間がかかる。遠

    宇宙の果てや加速膨張はどう観測されるか - Active Galactic : 11次元と自然科学と拷問的日常
  • 新たなニュートリノ・アノマリー - Active Galactic : 11次元と自然科学と拷問的日常

    すでに衆知のことだけど、CERNで生成したニュートリノビーム(CNGS beam)を使ったOPERA実験において、ニュートリノの速度vを測定したところ、真空中の光速cより有意に速いというセンセーショナルな結果が得られた。 よく分からない結果が出てあーだこーだ議論する状況は、多数の研究者が参加した大プロジェクトでもある話だが、想像以上にメディアの反響があり、あっという間に世紀の大ニュースになって驚いている。 実験の要点 実験に関して重要そうなポイントは、以下を含めた多くの方に語られてしまった後なので、あまりしゃべることがない。 光よりも速く : 大栗博司のブログ 大栗さん 科学と報道の間で (ニュートリノの速度と光の速度) : 油断するなここは戦場だ 野尻さん http://journal.mycom.co.jp/articles/2011/09/25/neutrino/index.html

    新たなニュートリノ・アノマリー - Active Galactic : 11次元と自然科学と拷問的日常
  • 中性子爆弾とはなにか - Active Galactic : 11次元と自然科学と拷問的日常

    中性子爆弾は水爆や原爆に次いで(日では?)引用される弾頭のひとつだ。しかし、それがどのようなものなのか世間では漠然としていて正確なイメージが確立していない。中性子爆弾に言及する文章などでも「建物や兵器は無傷で残るが中にいる人間は放射線ですべて死亡する。」などというポエティックな表現がよく用いられる。流布する情報の希薄さ故か、仮想戦記などでも中性子爆弾を選択することが合目的でない場面でも平気で用いられ、ありえない描写が普通になされる。 中性子爆弾 中性子爆弾は水素爆弾の一種だ。ただし、出力は通常の水爆よりも遥かに小さく、通常原爆よりも抑えられている。そのかわり、相対的に放射線のエネルギー割合が増大するよう設計されている。正確にはER (Enhanced Radiation)とよばれており、「放射線強化型」という直訳が実態をよく表している。爆発エネルギーを広島原爆より抑えつつ、放射線を広島原

    中性子爆弾とはなにか - Active Galactic : 11次元と自然科学と拷問的日常
  • 1kgの鉄と1kgの鉄、どちらが重い? - Active Galactic : 11次元と自然科学と拷問的日常

    同じ質量の綿と鉄はどちらが重いか。 この問題は簡単ではない。どんな質量の綿や鉄を想定するかによって答えは違う。例えば、1000億太陽質量の鉄と綿だったら両者とも即座にブラックホールだ。両者の終状態はほとんど変わらない。ブラックホールは元の天体が持っていた個性をベリベリと引き剥がしてしまう。 では、もっと質量を減らして1億地球質量だったらどうか。 1億地球質量の綿と1億地球質量の鉄、どちらが重い? だいたい恒星質量の上限域に相当する。300太陽質量だ。 綿は自己重力で潰れていき、位置エネルギーの解放によってどんどん温度を上げる。中心部の温度は100万Kを超え水素の核融合が起こる。巨大な赤ちゃん星の誕生だ。莫大なエネルギーが発生し物質が宇宙空間に激しく流出する。ただし、綿は質量の大部分を炭素と酸素が占めており、恒星と白色矮星の中間のような組成だ。わずかな水素を使い果たすまでは延命すると予想はし

    1kgの鉄と1kgの鉄、どちらが重い? - Active Galactic : 11次元と自然科学と拷問的日常
    nagaichi
    nagaichi 2010/12/13
    お題は誤字にあらず。
  • 東京バベルタワー:10000mの建造物 - Active Galactic : 11次元と自然科学と拷問的日常

    高度1万メートル:エベレスト/チョモランマより高く対流圏の終わるところ、気温は零下50度、大気は地上の4分の1、ジェット機が飛ぶ高さまで聳え立ち、関東一円の人口を吸収できる建造物のプロジェクトをご存知だろうか。 バブル期の黒歴史になってしまったのかもしれないけど、東京バベルタワー(Tokyo Babel Tower)に関する情報ってネット上でほとんどないよね。ゼネコンの考えたSkyCity (清水建設)やXeed4000 (大林組)大成建設の資料は残っているのに、バブルの極北たる東京バベルタワーの解説ページが皆無だとはね。あの時代の独特の空気を代表するプロジェクトがこのまま歴史の闇に葬られるのは忍びないし、ちょうど発案者が今年で退任なされるということで記念に基礎データいくつか資料を引用しておく。 プロジェクト名:東京バベルタワー 提案者:尾島俊雄 早稲田大学教授 提案:ブラジル環境サミット

    東京バベルタワー:10000mの建造物 - Active Galactic : 11次元と自然科学と拷問的日常
  • ベテルギウスの最期:超新星の兆候とその威力 - Active Galactic : 11次元と自然科学と拷問的日常

    最近、オリオン座のベテルギウスに関して"刺激的な"タイトルのニュースが流れた。オリオン座は覚えやすく都会でも楽しめる手軽な星座だ。そのオリオンが肩を壊すかもしれないとなれば書かざるを得ない。 重い星の死 天蓋にぶら下がる星々は永遠の存在ではなく、だいたい数百万年から数兆年の寿命で移ろいゆく。ヒトの死が多様であるように、星の死にもまた個性がある。それは体重や組成、相方の有無などによって決まり、静かに冷たくなることもあれば、木っ端微塵に吹き飛ぶこともある。ベテルギウスのような重い星は、超新星と呼ばれる大爆発によって焼死する。爆発の閃光はひとつの銀河に匹敵するほどであり、ベテルギウスのような至近爆発ともなればどのような状況が生じるのか興味は尽きない。そして、爆発はどのくらい差し迫っているのだろう。 どのような超新星を起こすのか ベテルギウスは水素をたっぷり含んだ赤色超巨星なので、もし今爆発するな

    ベテルギウスの最期:超新星の兆候とその威力 - Active Galactic : 11次元と自然科学と拷問的日常
    nagaichi
    nagaichi 2010/02/13
    これはすごい。
  • 「大質量の天体」≠「地表重力が強い」:宇宙におけるサイズと密度の関係 - Active Galactic : 11次元と自然科学と拷問的日常

    海洋惑星の候補となるスーパーアース(GJ 1214b)が発見されたようだ。その話題で気づいたのだが「大きな惑星は当然重力が強い。人間が住むには不適だ。」そう漠然とイメージされているケースが多い印象を受けた。 小天体はともかく大型惑星の地表重力をその大きさだけでイメージすることはあまり望ましくない。例えば、太陽系の惑星の表面重力は以下の通りだ。 木星は300地球質量という莫大な物質を集積した惑星だが、それでも高々2.4Gしかない。人間が耐えられるレベルだ。他の大型惑星は地球と同等か、むしろ地球より表面重力が小さい天体さえある。系外惑星の例では木星より一回り大きな(HD 209458 b)の表面重力が0.9G程度だ*1。「比較対象がガス惑星ばっかりじゃねーか」という物言いは当然あるだろうが、地球型惑星でもそう事情はかわらない。今回発見されたGJ 1214bは地球よりずっと巨大な惑星だが表面重力

    「大質量の天体」≠「地表重力が強い」:宇宙におけるサイズと密度の関係 - Active Galactic : 11次元と自然科学と拷問的日常
  • 宇宙戦艦はなぜ白い - Active Galactic : 11次元と自然科学と拷問的日常

    SFに出て来る純白の宇宙戦艦って、カラフル兵士なみに違和感ある。なんでそんな目立つ色なの?見つけてほしいの?的になりたいの?映像表現と大人の事情だから不問なの?そんな風に突っかかった年頃があったような気がするが、懐かしすぎて何歳のころだったかすら思い出せない。 黒い宇宙船(左)と、白い宇宙船(右):左の輪郭はイメージ。 上の画像(左)では輪郭をつけているが、黒い宇宙船は宇宙空間に完全に溶け込んでしまう。輪郭線を取り払ってしまえばただの何も無い空間だ。 作品空間でのご都合設定ならともかく、現実の延長線上としての軍用システムが迷彩を意識しないとは考えがたい。ただ黒く塗るだけでなく、レーダー波吸収構造から液体ヘリウムによる表面冷却まで、あらゆる手を使って検出を逃れようとしても不思議ではない。 でも、リアルで黒い宇宙船なんて聞かないよね 現実世界で軌道上にある宇宙船や人工衛星はことごとく真っ白だっ

    宇宙戦艦はなぜ白い - Active Galactic : 11次元と自然科学と拷問的日常
  • 太陽の光はどこまで届く? - Active Galactic : 11次元と自然科学と拷問的日常

    これからの季節、大いなる正午の直射日光は、それに照らされた鉄路の小石ですらその一つ一つをギラギラと輝かせる。 太陽、この偉大な天体の明るさはさらに一段上の形容詞が必要なほどで、「死と太陽は直視できない」とまでいわれる。うそだと思ったらほんの1分ほど太陽を見てみよう、みごとに目から光をくりぬかれることになる。 それほど激烈な光を放つ太陽ではあるが、その明るさが無限ではない以上、十分な距離をとってしまえば、ずいぶん小さく頼りないものになってしまうだろう。太陽から離れ、果てしない旅路の果て、いずれは太陽の光を肉眼ではもう認められなくなる時がやってくる。 実視6等を限界とすれば、その距離は約50光年だ。 意外と近いと思った人も多いのではないだろうか。高々50光年、宇宙の話題ではまるでご近所のように書かれるが、それは太陽クラスの光がその方角にありながら視界か失せてしまうほどの距離だ。 夜空の深さを探

    太陽の光はどこまで届く? - Active Galactic : 11次元と自然科学と拷問的日常