Understand your dataset with XGBoost Tianqi Chen, Tong He, Michaël Benesty, Yuan Tang 1.1 Introduction The purpose of this vignette is to show you how to use XGBoost to discover and understand your own dataset better. This vignette is not about predicting anything (see XGBoost presentation). We will explain how to use XGBoost to highlight the link between the features of your data and the outcome.
Window functions A window function is a variation on an aggregation function. Where an aggregation function, like sum() and mean(), takes n inputs and return a single value, a window function returns n values. The output of a window function depends on all its input values, so window functions don’t include functions that work element-wise, like + or round(). Window functions include variations on
MongoDB (www.mongodb.org) is a scalable, high-performance, document-oriented NoSQL database. The rmongodb package provides an interface from the statistical software R (www.r-project.org) to MongoDB and back using the mongodb-C library. This vignette will provide a first introduction to the rmongodb package and offer a lot of code to get stared. If you need anyhelp getting started with MongoDB pl
Tyson Barrett [aut, cre], Matt Dowle [aut], Arun Srinivasan [aut], Jan Gorecki [aut], Michael Chirico [aut], Toby Hocking [aut], Pasha Stetsenko [ctb], Tom Short [ctb], Steve Lianoglou [ctb], Eduard Antonyan [ctb], Markus Bonsch [ctb], Hugh Parsonage [ctb], Scott Ritchie [ctb], Kun Ren [ctb], Xianying Tan [ctb], Rick Saporta [ctb], Otto Seiskari [ctb], Xianghui Dong [ctb], Michel Lang [ctb], Watal
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く