並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 40 件 / 177件

新着順 人気順

Kerasの検索結果1 - 40 件 / 177件

  • 技術ようつべチャンネル集 - Qiita

    役立つYouTubeのチャンネルまとめ 数学、物理、アルゴリズム、プログラミング、などなど自分が使う技術に役立ちそうだな、困ったときによく見たなと思うチャンネルを紹介する。 取っ掛かり、ハマりがち、コツみたいな物が拾える。数学がメイン。随時更新していくつもり。 当たり前だけどちゃんと本も読んで勉強するんだぞ。 背景 YouTubeは視聴する登録チャンネルの数が増えると、チャンネルが埋もれて発掘困難になりがち (chrome拡張でできるチャンネルのフォルダ分け機能は、ぽちぽち登録するのも面倒で、そのフォルダの中から掘り出すのも難しい) モチベが上がる(おべんつよしたい)チャンネルを探してるうちに湧いてくる、わんにゃんコンテンツ(だいちゅき)に流され一日が終わるため、 モチベが上がる有用なチャンネルにすぐにたどり着くために、よく使うQiitaに列挙しておくことにした Streamや大学専用サイ

      技術ようつべチャンネル集 - Qiita
    • ディープラーニング実践入門 〜 Kerasライブラリで画像認識をはじめよう! - エンジニアHub|若手Webエンジニアのキャリアを考える!

      ディープラーニング実践入門 ~ Kerasライブラリで画像認識をはじめよう! ディープラーニング(深層学習)に興味あるけど「なかなか時間がなくて」という方のために、コードを動かしながら、さくっと試して感触をつかんでもらえるように、解説します。 はじめまして。宮本優一と申します。 最近なにかと話題の多いディープラーニング(深層学習、deep learning)。エンジニアHubの読者の方でも、興味ある人は多いのではないでしょうか。 しかし、ディープラーニングについて周りのエンジニアに聞いてみると、 「なんか難しそう」 「なかなか時間がなくて、どこから始めれば良いかも分からない」 「一回試してみたんだけど、初心者向けチュートリアル(MNISTなど)を動かして挫折しちゃったんだよね」 という声が聞こえてきます。 そこで! この記事では、そうした方を対象に、ディープラーニングをさくっと試して感触を

        ディープラーニング実践入門 〜 Kerasライブラリで画像認識をはじめよう! - エンジニアHub|若手Webエンジニアのキャリアを考える!
      • 東京大学の松尾研究室が無料公開している「Deep Learning基礎講座演習コンテンツ」の自主学習方法 - karaage. [からあげ]

        新たな教育プログラム「DL4US」が開始しています。 2019年5月に、松尾研究室の新たなディープラーニングの無料教材「DL4US」が公開されています。「Deep Learning基礎講座演習コンテンツ」のバージョンアップ版の位置付けなので、今から学習する方はこちらに取り組んだ方が良いかと思います。 Dockerを使った環境構築方法を紹介している記事を書いたので、もし良ければ以下記事参照下さい。 Deep Learning基礎講座演習コンテンツが無料公開 以下のようなサイトが無料公開されていました。 学習に自由に使用してよいとのことです。ただ、肝心の使用方法が詳しく書いてないので、初心者には環境構築が厳しく、簡単に環境構築できる人にとっては、知っている内容のところが多い気がして、内容が良いだけにもったいなと感じました。 そこで、ちょっと初心者向けに環境構築の補足をしてみたいと思います。 そ

          東京大学の松尾研究室が無料公開している「Deep Learning基礎講座演習コンテンツ」の自主学習方法 - karaage. [からあげ]
        • データサイエンティストもしくは機械学習エンジニアになるためのスキル要件とは(2017年夏版) - 渋谷駅前で働くデータサイエンティストのブログ

          この記事は2年前の以下の記事のアップデートです。 前回はとりあえずデータサイエンティストというかデータ分析職一般としてのスキル要件として、「みどりぼん程度の統計学の知識」「はじパタ程度の機械学習の知識」「RかPythonでコードが組める」「SQLが書ける」という4点を挙げたのでした。 で、2年経ったらいよいよ統計分析メインのデータサイエンティスト(本物:及びその他の統計分析職)vs. 機械学習システム実装メインの機械学習エンジニアというキャリアの分岐が如実になってきた上に、各方面で技術革新・普及が進んで来たので、上記の過去記事のスキル要件のままでは対応できない状況になってきたように見受けられます。 そこで、今回の記事では「データサイエンティスト」*1「機械学習エンジニア」のそれぞれについて、現段階で僕が個人的に考える「最低限のスキル要件」をさっくり書いてみようかと思います。最初にそれらを書

            データサイエンティストもしくは機械学習エンジニアになるためのスキル要件とは(2017年夏版) - 渋谷駅前で働くデータサイエンティストのブログ
          • 機械学習入門 - 基本のPythonライブラリ、9つを触って学ぶ - エンジニアHub|若手Webエンジニアのキャリアを考える!

            機械学習入門 - 基本のPythonライブラリ、9つを触って学ぶ 機械学習を学ぶために、まず知っておきたいPythonライブラリを、機械学習エンジニアの「ばんくし」こと河合俊典さんに厳選し、そのエッセンスをつづってもらいました。機械学習入門に向けたスタートアップガイドです! こんにちは。機械学習エンジニアの「ばんくし」こと河合俊典(かわい・しゅんすけ/ @vaaaaanquish )です。 近年の機械学習関連の開発では、多くの場合Pythonが用いられます。 本記事は、「機械学習をこれから初めてみたいけど何から始めればいいか分からない」「基本のキから学びたい」という方に向けて執筆しました。プログラミング言語「Python」の中でも、特に機械学習における使用頻度の高いライブラリを厳選し、その解説を目的としています。 「この記事の内容に沿ってPythonを学習すれば、機械学習エンジニアとして入

              機械学習入門 - 基本のPythonライブラリ、9つを触って学ぶ - エンジニアHub|若手Webエンジニアのキャリアを考える!
            • [37選]機械学習ライブラリやフレームワークは? 国内AI活用サービスのアーキテクチャを大調査!

              [37選]機械学習ライブラリやフレームワークは? 国内AI活用サービスのアーキテクチャを大調査! Webのアーキテクチャ大調査の第二弾は「AI活用サービス」編。プログラミング言語や機械学習のライブラリをはじめ、フレームワークやツールの選定・設計もサービスによって異なります。ぜひ参考にしてください。 2017年4月に掲載したアーキテクチャ大調査の第二弾! 今回は、人工知能(機械学習、深層学習、画像処理など)を活用したWebサービス・アプリを提供しているベンチャーを中心に、36のサービスで使用されているプログラム言語やフレームワーク、その他さまざまな開発ツールなどをヒアリングのうえまとめました。選定理由を記述いただいた12のサービスでは、それもあわせて紹介しています。 前回との違いは、当然ですがTensorFlowやKerasといった機械学習のライブラリが挙げられていること。また、技術領域もH

                [37選]機械学習ライブラリやフレームワークは? 国内AI活用サービスのアーキテクチャを大調査!
              • ゴリゴリの文系がAIをほぼ独学した半年 - Qiita

                ゴリゴリの文系(偏差値40前半)がAIを学んだ半年 どうも、ゴリゴリの文系です。 商業高校卒業したあと、文系学部にいったので、そこらへんの文系とは格が違います。 文系界のサラブレットです。 肝心な数学力ですが、高校で数学Aまで勉強して、大学で数学入門とっただけです。 つまり、戦闘力0.1ぐらいです。 これから勉強する人に向けてポエムをつらつらと書いていきます。 やってきたこと 実装から始めたい人はある程度参考になるかと。 理論から始めたい人は微積、線形代数、確率統計の基礎を習得してからcouseraに行くのが良いのではないでしょうか。(個人の感想です。) 独学はモチベドリブンでやんないとしんどいので自分でカスタマイズしていってください。 0ヶ月目 会社の研修でプログラミングの基礎を習得。 ここでJavaを勉強してそこそこ組めるようになりました。 研修が終わってから2日くらいかけて、pyth

                  ゴリゴリの文系がAIをほぼ独学した半年 - Qiita
                • 東大松尾研究室監修のエンジニア向け教育プログラム「DL4US」の演習コンテンツが無償公開 | Ledge.ai

                  2018年にかけて実施されていた、東京大学松尾研究室が監修するエンジニア向け無償教育プログラム「DL4US」の、演習パートのコンテンツが無償公開された。 関連記事:松尾研監修のディープラーニング無償オンラインプログラム「DL4US」が募集を開始 「DL4US」とは?Deep Learningエンジニア育成講座「DL4US」の演習コンテンツを無償公開しました。実装に重きを置いてエンジニア向けに松尾研で作成したもので、画像認識や翻訳モデルから始まり、生成モデルや強化学習まで扱う実践的な内容になっています。ご興味ある方はぜひ。https://t.co/jLWlrk9UdK — 松尾 豊 (@ymatsuo) 2019年5月15日 DL4USは高度なディープラーニング技術者を育成することを目的とした、アプリケーション指向の無償オンライン教育プログラムだ。 東京大学ディープラーニング基礎講座、応用講

                    東大松尾研究室監修のエンジニア向け教育プログラム「DL4US」の演習コンテンツが無償公開 | Ledge.ai
                  • 【保存版・初心者向け】独学でAIエンジニアになりたい人向けのオススメの勉強方法 - Qiita

                    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 追記 【2020年版・初心者向け】独学でAIエンジニアになりたい人向けのオススメの勉強方法 【保存版・初心者向け】独学でAIエンジニアになりたい人向けのオススメのAI勉強方法 また、Pythonや機械学習がオンライン上で学べるAI Academyをnoteでも書きましたが、3/17日からほとんどのコンテンツを永続的に無料で利用できるよう致しましたので、是非使って頂けますと幸いです。 AI Academy Bootcamp 我々が提供している個人向けオンラインAIブートキャンプのご紹介です。 AI Academy Bootcamp AI

                      【保存版・初心者向け】独学でAIエンジニアになりたい人向けのオススメの勉強方法 - Qiita
                    • Kaggleで世界11位になったデータ解析手法~Sansan高際睦起の模範コードに学ぶ|ハイクラス転職・求人情報サイト AMBI(アンビ)

                      Kaggleで世界11位になったデータ解析手法~Sansan高際睦起の模範コードに学ぶ Kaggleの上位入賞者であるKaggle Grandmasterを獲得した、Sansan株式会社のデータサイエンティスト高際睦起さん。模範となるソースコードをもとに考え方や解析手法を教えていただきました。 「Porto Seguro’s Safe Driver Prediction」とは? 【技法1】前処理 【技法2】特徴抽出 【技法3】予測モデルの作成 Kaggle初心者は何から始めるべき? データサイエンティストを目指す若き人たちへ 世界中のデータサイエンティストたちが集まり、企業や研究者が投稿したデータに対する高精度なモデルを競い合うプラットフォーム・Kaggle。メンバーは100万人を超えており、良問の多さや参加者のレベルの高さゆえに、機械学習を学ぶ者にとって優れた研鑽(けんさん)の場となって

                        Kaggleで世界11位になったデータ解析手法~Sansan高際睦起の模範コードに学ぶ|ハイクラス転職・求人情報サイト AMBI(アンビ)
                      • データサイエンティストもしくは機械学習エンジニアを目指すならお薦めの初級者向け6冊&中級者向け15冊(2017年春版) - 渋谷駅前で働くデータサイエンティストのブログ

                        (Photo credit: https://pixabay.com/en/books-door-entrance-italy-colors-1655783/) この記事は一昨年のこの書籍紹介記事のアップデート版です。 相変わらず毎月のように新刊書が出続けるデータ分析業界ですが、良い本が増え続けてきたせいでついに初級者向けは6冊、中級者向けは何と15冊にまで膨れ上がってしまいました(汗)。ともあれ、自分のところにアフィリエイトの類は一銭も入らないにもかかわらず*1懲りずに書籍紹介をやろうと思います。 あ、最初に断っておきますが僕の知識レベルは極めて適当なので、極めていい加減なことを書いている可能性があります。また最初に読んでから時間が経っていて記憶があやふやなせいで、内容に関する記述が不正確な書評が混じっている可能性もあります。誤っているところやおかしいところがあったらバンバン突っ込んでく

                          データサイエンティストもしくは機械学習エンジニアを目指すならお薦めの初級者向け6冊&中級者向け15冊(2017年春版) - 渋谷駅前で働くデータサイエンティストのブログ
                        • 制御工学の基礎あれこれ

                          In English ■初めに PID制御や現代制御などの制御工学(理論)の基礎や、制御工学に必要な物理、数学、ツール等について説明します。 私のプロフィールを簡単に説明しますと、私は自動車関連企業に勤めており、そこで日々制御工学(理論)を利用しながら設計開発をしております。 ここで説明する内容は、制御理論を扱い実際にモノに実装していく上で最低限理解しておいた方が良い内容と思います。 少しでも皆様の役に立ち、学力の底上げに貢献し、ひいては日本の発展、ひいては人類の発展に貢献できたらこの上ない喜びです。 内容を説明する際に次のことを心掛けています。 ① できるだけシンプルに。より少ない文章で内容を的確に説明する。 ② 1ページの記事のボリュームを多くし過ぎない ③ 文字のフォントは大きすぎず、行間を開けすぎない。(画面スクロールが頻繁になると情報が伝わりづらくなる) ④ 内容の説明とは直接関

                          • 機械学習素人が2か月半で機械学習を入門したことまとめ - あさのひとりごと

                            ちまたでは、機械学習がブームのようです。 が、、まったく時代についていけていません。 しかし、機械学習、特に自然言語処理に精通した人の採用にかかわる仕事をしている、、、 にもかかわらず、自然言語処理どころか機械学習が全く分からない。 これでは、いけない。ということで 「機械学習をたしなむ学生の皆さんと、ふわっと雑談ができるレベル」 を目指して、2017年正月明けから勉強を始めました。 ちなみに、どんなにキリが悪くても1日3時間まで!と決めています。 そもそも機械学習に興味関心があるわけではない やらなければならない他の仕事がある 家事育児が優先 なので、すこしでも無理すると続かないためです。 「AIで世界を変えられる!」 「人工知能で想像もできない未来が、、、」 みたいなご時世の中、ありえないほどの低テンションで淡々と勉強しているわけで 逆に、そういう意識低い系人間はそんなに多くないでしょ

                              機械学習素人が2か月半で機械学習を入門したことまとめ - あさのひとりごと
                            • 【2020年】AWS全サービスまとめ | DevelopersIO

                              このエントリは、2018年、2019年に公開したAWS全サービスまとめの2020年版です。これまではいくつかに分割して公開していましたが、1エントリにまとめてほしいという要望をもらっていたため、今年は1エントリに集約してみました。 こんにちは。サービスグループの武田です。 このエントリは、2018年、2019年に公開した AWS全サービスまとめの2020年版 です。これまではいくつかに分割して公開していましたが、1エントリにまとめてほしいという要望をもらっていたため、今年は1エントリに集約してみました。どちらがいいのか正直わからないので、フィードバックなどあれば参考にさせていただきます。 2020-01-08 リクエストがあったためAmazon Mechanical Turkを追加。 2018年まとめ 【2018年】AWS全サービスまとめ その1(コンピューティング、ストレージ、データベー

                                【2020年】AWS全サービスまとめ | DevelopersIO
                              • 機械学習を学ぶ上で個人的に最強と思う教科書 - Qiita

                                Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 動機 いわずもがなですが、機械学習の勉強にはとても時間が掛かります。 でも、同じ勉強時間を費やしたとしても、教材の良し悪しで捗り方が大きく変わってくることは、誰もが実感していることだと思います。 そこで、本記事ではテーマごとに私が考える最強の教科書をリストしていこうと思います。 ディープラーニング(アルゴリズムの理解) 「Deep Learning」An MIT Press book, 2016/12 発行 http://www.deeplearningbook.org/ 印刷本も売られてますが、上のWebページでいつでもタダで読めます

                                  機械学習を学ぶ上で個人的に最強と思う教科書 - Qiita
                                • 東大松尾研から新たに無償公開されたDeep Learning講座「DL4US」が良い、という話 - Qiita

                                  5/15より東大松尾研究室からDeepLearningエンジニア養成講座「DL4US」の演習コンテンツが無償公開されました。 ※講義パートは公開されていない DL4USコンテンツ公開ページ 私は業務でデータ分析に携わっており、sklern等での機械学習には触れたことがありますが Deep Learningは「いつか勉強しよう...」と思ってできていない状況でした。 ※一度Udemyで講座を受講しましたが、挫折しています。 まだDL4USのLesson0,1をやってみただけですが、非常に良いものだと感じたのでシェアしたいと思います!! DL4USについて DL4USの紹介記事から本講座の特徴を引用させていただきます。 アプリケーション指向 高度な数学的知識は不要 1人1台独立した仮想GPU環境を用意 実際にモデルを学習させながら技術を習得 コードはすべてKeras (TensorFlow)と

                                    東大松尾研から新たに無償公開されたDeep Learning講座「DL4US」が良い、という話 - Qiita
                                  • ディープラーニングさえあれば、競馬で回収率100%を超えられる - Qiita

                                    pohotos by Ronnie Macdonald **「AIが人間の仕事を奪う」と言われ始めてしばらく経ちますが、今や「幻滅期に入った」**なんて言われ方もしています。おかげで僕は仕事を奪われることもなく、毎日満員電車に揺られています。奪う奪う詐欺もいいとこです。 そんなAIの発展にはもう少し時間がかかりそうな一方で、学べる環境は簡単に手に入るようになりました。触るなら、皆が幻滅しかかっている今な気もします。ということで、今更ですがAIの力を知るべく、ディープラーニングに触れてみることにしました。 いろいろ試したのですが、ここでは結果をメインに**「無知の状態から勉強しても、ディープラーニングでこれぐらいは楽しめるよ」**ということを伝えてみます。プログラムはお手本になるようなものではないので、見たい人だけに有料で公開してみます。 Kaggleでディープラーニングのお手並み拝見 最初

                                      ディープラーニングさえあれば、競馬で回収率100%を超えられる - Qiita
                                    • DeepLearning研究 2016年のまとめ - Qiita

                                      DeepLearning Advent Calendar 2016の17日目の記事です。 はじめに はじめまして。 Liaroという会社でエンジニアをしている@eve_ykと申します。 今年もあと僅かとなりました。 ここらで、今年のDeepLearningの主要な成果を振り返ってみましょう。 この記事は、2016年に発表されたDeepLearning関係の研究を広く浅くまとめたものです。今年のDeepLearningの研究の進歩を俯瞰するのに役立てば幸いです。 それぞれの内容について、その要点や感想なんかを簡単にまとめられたらと思います。 特に重要だと思った研究には★マークをつけておきます。 非常に長くなってしまったため、興味のある分野だけ読んでいただければと思います。 言い訳とお願い 見つけたものはコードへのリンクも示すので、プログラミングに関係ある記事ということで… 分野的にかなり偏っ

                                        DeepLearning研究 2016年のまとめ - Qiita
                                      • Google Colaboratoryを使えば環境構築不要・無料でPythonの機械学習ができて最高 - karaage. [からあげ]

                                        Google Colaboratoryが便利 最近、Google Colaboratoryがちょっと気になっていたのですが、タダケン (id:tadaken3)さんの以下記事に分かりやすく使い方が書いてあったのをきっかけに試して見ました。 結論から言うと、これ良いですね。Google Colaboratoryには以下の特徴(利点)があります。 ローカルPCに必要なのはブラウザ(Google Chrome)のみ クラウド上にPython環境がありPython2/3 両方使える 機械学習に必要なライブラリは、ある程度プリインストールされている(numpy, matplotlib, TensorFlow等) 必要なライブラリは !pip installでインストールできる 日本語フォントも(ちょっと工夫すれば)使える 無料で使える。なんとGPUも12時間分を無料で使える! これ死角無さすぎでは…

                                          Google Colaboratoryを使えば環境構築不要・無料でPythonの機械学習ができて最高 - karaage. [からあげ]
                                        • 日本のウェブデザインの特異な事例

                                          sabrinas.spaceより。 8週間もかからなかったはずのプロジェクト 日本のウェブデザインはどう違うのか? 2013年のRandomwireのブログ投稿で、著者(David)は、日本のデザインの興味深い相違点を強調しました。日本人はミニマリストのライフスタイルで海外に知られていますが、ウェブサイトは奇妙なほどマキシマリストです。ページには様々な明るい色(3色デザイン原則を破っている)、小さな画像、そして多くのテキストが使われています。2022年11月に撮影されたこれらのスクリーンショットで、自分の目で確かめて下さい。 ブログ投稿には、文化的専門家、デザイナー仲間、そして不満を抱く市民によって支持されている、考えられる理由がいくつか挙げられていました。 この理論が今でも正しいのか、また、もっと定量的なアプローチが可能なのか気になったのでやってみました。 私が見つけたもの 各国の最も人

                                            日本のウェブデザインの特異な事例
                                          • 15時間で学べるAI学習決定版。グーグルが提供する無料の機械学習集中講座が大幅刷新され、LLMもカバー | DevelopersIO

                                            15時間で学べるAI学習決定版。グーグルが提供する無料の機械学習集中講座が大幅刷新され、LLMもカバー Googleが提供する無料の機械学習の集中講座はご存知でしょうか? 機械学習に関する幅広いテーマを座学・動画・実験・コーディングといった様々なアプローチで15時間で学べます。しかも無料です。 このコンテンツはもともとは2018年に公開されたものであり、多くのエンジニアに活用されました。 とはいえ、2017年のTransformerの論文、大規模言語モデルの発展、2022年のChatGPTリリースなど、AIは急速に発展し、より広い職種に身近なものになっています。 この流れを受けて、入門講座は2024年8月に大幅に刷新されました。 ※冒頭で登場するResearch DirectorのPeter NorvigはAIの世界的な教科書"Artificial Intelligence: A Mode

                                              15時間で学べるAI学習決定版。グーグルが提供する無料の機械学習集中講座が大幅刷新され、LLMもカバー | DevelopersIO
                                            • RasPiとディープラーニングで我が家のトイレ問題を解決する - Qiita

                                              おしっこセンサーできました ウチの小学生の息子が家のトイレでたびたびおしっこをこぼしてしまう。俺がくどくど注意してもあんまり効果ない。そこで、代わりにAIに怒ってもらうことにした。こんな感じである。 おしっこセンサーのデモ([動画](https://www.youtube.com/watch?v=ktSukhHdogM))。水を数滴床にたらすとブザーが鳴り、床を拭くと止まる。 ディープラーニングの画像認識を使い、床の上に落ちた水滴をカメラで検出してブザーが鳴る仕組みだ。夏休みの自由工作に過ぎないので精度は期待していなかったけど、意外にきちんと動いてくれて、カメラに映る範囲に水滴を数滴たらすとピッピと鳴り、床を拭くとブザーも止まる。「お父さんだってAIくらい作れるぞ」と息子に自慢したいがための工作なのだ。 でも、これ作るのはそんなに難しくなくて、休み中の3日くらいで完成した。かかったお金は、

                                                RasPiとディープラーニングで我が家のトイレ問題を解決する - Qiita
                                              • Retty流『2200万ユーザを支える機械学習基盤』の作り方 - Qiita

                                                みなさん、こんにちは。Retty CTO の樽石です。 この記事は Retty Advent Calendar 25日目です。メリークリスマス。 昨日は @ttakeoka の『MFIにむけてRettyの取り組み』でした。 今年も残りわずかになりました。いかがお過ごしですか? Retty はこの 1 年でエンジニアがほぼ倍増しました。それによって、情報発信者が増え、Advent Calendar に参加出来るようになりました。みんな楽しそうにしていて、うれしいです。 Retty Inc. Advent Calendar 2016 - Qiita さて、今年最後の Retty Advent Calendar 記事を書くということで、はじめは 1年のまとめ的内容にしようかと思いましたが、それでは平凡で面白くありません。そこで、ネタになりそうなマニアックな技術的記事で締めくくりたいと思います。

                                                  Retty流『2200万ユーザを支える機械学習基盤』の作り方 - Qiita
                                                • ペパボの新卒研修で利用した資料を公開します - Pepabo Tech Portal

                                                  2020年はペパボに9人の新卒エンジニアが入社しました。今年も新卒エンジニアを対象に、3ヶ月に及ぶエンジニア研修を開催しました。 本エントリでは、研修の全体像のご紹介や、研修で利用した各資料を公開します。また、領域別に研修担当者より概要の紹介をします。 新卒研修の資料作成を担当している方や、新卒・中途問わず、新しい領域にチャレンジしたいエンジニアの方はぜひご覧ください! GMO ペパボの研修 GMO インターネットグループでは、毎年 GMO Technology Bootcamp(以下、GTB) と題して、グループ全体のエンジニアとクリエイター(デザイナ)が集まってプロダクトを作っていく上で必要となるベースラインの技術を学ぶ研修を行っています。 GMO ペパボの新卒入社のメンバーは今年から本格的に GTB に参加しました。新卒メンバーが参加するなら、と講義の内容の作成や講師としての参加につ

                                                    ペパボの新卒研修で利用した資料を公開します - Pepabo Tech Portal
                                                  • 勾配降下法の最適化アルゴリズムを概観する | POSTD

                                                    (編注:2020/10/01、2016/07/29、いただいたフィードバックをもとに記事を修正いたしました。) 目次: さまざまな勾配降下法 バッチ勾配降下法 確率的勾配降下法 ミニバッチ勾配降下法 課題 勾配降下法を最適化するアルゴリズム Momentum(慣性) Nesterovの加速勾配降下法 Adagrad Adadelta RMSprop Adam アルゴリズムの可視化 どのオプティマイザを選ぶべき? SGDの並列化と分散化 Hogwild! Downpour SGD SGDのための遅延耐性アルゴリズム TensorFlow Elastic Averaging SGD 最適化されたSGDに対する更なる戦略 シャッフル学習とカリキュラム学習 バッチ正規化 早期終了 勾配ノイズ 結論 参考文献 勾配降下法は、最適化のための最も知られたアルゴリズムの1つです。これまではニューラルネット

                                                      勾配降下法の最適化アルゴリズムを概観する | POSTD
                                                    • 営業マンが1年でSEになって機械学習エンジニアに転職する話 - かえるのプログラミングブログ

                                                      こんばんは、かえるるる(@kaeru_nantoka)です。 先日、10ヶ月勤めたSES企業に辞意を伝えました。 そして4月からは、ストックマーク株式会社(https://stockmark.ai/ )にて、NLPを応用した機械学習エンジンを開発する機械学習エンジニアとして参画することになりました。 ちょうどいい人生の節目なので、流行っている転(退)職エントリを描いてみようと思います。 概要 ・営業職だけど趣味で始めたプログラミングにハマったよ ・未経験だけど第二新卒的なアレでプログラマーになるぞ ・ひょんなことから kaggle にハマったぞ ・なんか上京することになったよ ・なんで私がエクセル職人に!? ・なんとかソロ銅メダル取れたぞ ・kaggle 強くなりたいからもう一度転職するぞ! 筆者のスペック ・経済学部卒 ・プログラミング歴1年ちょい(2017年12月~) ・kaggle(

                                                        営業マンが1年でSEになって機械学習エンジニアに転職する話 - かえるのプログラミングブログ
                                                      • 【保存版・初心者向け】僕が本気でオススメするPythonと機械学習の良書12選

                                                        ※実際記事で紹介する書籍は12冊ですが、メンバーが借りてオフィスになかったため、上記画像内に3冊ないものがあります。 はじめに AI Academyを開発・運営しています、株式会社エーアイアカデミー代表の谷です。 6ヶ月ほど前に書いた下記記事は約1200のいいねと7万viewsを超える記事になりました。 【保存版・初心者向け】独学でAIエンジニアになりたい人向けのオススメの勉強方法 お読み頂いた方々、またいいねして頂いた方々ありがとうございました! あれから6ヶ月ほど経ちまして、さらにPythonや機械学習の書籍が増えて参りましたので、改めて初心者向けにPythonと機械学習の良書12選を紹介し、初学者が独学でも機械学習プログラミングの基礎スキルUPに貢献できたらと思います。 また、AIプログラミングを作りながら学べるプログラミング学習サービスAI Academyを無料でご利用頂けますので

                                                          【保存版・初心者向け】僕が本気でオススメするPythonと機械学習の良書12選
                                                        • 達人出版会:技術系電子出版・電子書籍

                                                          徹底攻略 応用情報技術者教科書 令和7年度 株式会社わくわくスタディワールド 瀬戸美月 CAE活用のための不確かさの定量化 ガウス過程回帰と実験計画法を用いたサロゲートモデリング 豊則 有擴 はじめてのNeRF・3DGS 基礎から応用までの実践ガイド 岩﨑 謙汰, 﨑山 皓平, 片桐 敬太, 進士 さくら, Aster Pythonライブラリによる因果推論・因果探索[概念と実践] 因果機械学習の鍵を解く Aleksander Molak(著), 株式会社クイープ(訳) 徹底攻略Java SE 17 Silver問題集[1Z0-825]対応 志賀 澄人 JavaScriptによるプログラミング講座 河村 一樹 データ分析実務スキル検定 シチズン・データサイエンティスト級 公式テキスト 株式会社ピープルドット 「どんくり」で楽しく学ぶ 共通テスト用プログラム表記完全ガイド 兼宗 進, 本多 佑

                                                            達人出版会:技術系電子出版・電子書籍
                                                          • 機械学習を勉強するときはDockerを使うと便利 - あさのひとりごと

                                                            いまお仕事の関係で、機械学習の教科書的な書籍を読んだりオンライン講座を受講したりしながらサンプルやチュートリアルを動かして勉強しています。 機械学習を勉強するときは、Pythonの環境を構築し、JupyterNotebookを使って、実際に手と頭を動かしながら行うのが効率的です。が、アルゴリズムの理論そのものの理解がすでにしんどい上、過学習対策のための正則化、汎化性能の評価、クロスバリデーション、不均衡データや少ないデータはどうすればいいか、などなどいちいち難しいことを数多く勉強しなければなりません。 その上、、、、機械学習での学習は、1度やれば終わり!ではなく、パラメータチューニングしたり、データを増やしたり加工したりしながら、繰り返しなんども行う必要があります。一見ビジネス寄り&アカデミックな雰囲気を醸し出していますが、実際のところは、非常に泥臭い作業のオンパレードです。 が、、、、、

                                                              機械学習を勉強するときはDockerを使うと便利 - あさのひとりごと
                                                            • Deep Learning のフレームワーク Chainer を公開しました - Preferred Networks Research & Development

                                                              こんにちは、得居です。最近は毎晩イカになって戦場を駆けまわっています。 本日、Deep Learning の新しいフレームワークである Chainer を公開しました。 Chainer 公式サイト GitHub – pfnet/chainer Chainer Documentation Chainer は、ニューラルネットを誤差逆伝播法で学習するためのフレームワークです。以下のような特徴を持っています。 Python のライブラリとして提供(要 Python 2.7+) あらゆるニューラルネットの構造に柔軟に対応 動的な計算グラフ構築による直感的なコード GPU をサポートし、複数 GPU をつかった学習も直感的に記述可能 ニューラルネットをどのように書けるか 次のコードは多層パーセプトロンの勾配を計算する例です。 from chainer import FunctionSet, Vari

                                                                Deep Learning のフレームワーク Chainer を公開しました - Preferred Networks Research & Development
                                                              • DeepLearning/機械学習を始めると必ずいるカス - BizDeep

                                                                (2018.1227)なんか急にバズったのでちょっと追記しました。 ディープラーニング人材はやばい奴だらけ これから「AIを仕事に導入したい!」と思う人は沢山いるでしょう。 ただ「ディープラーニング」や「AI」という言葉に関しては世間で色々な誤解がされており、正しく現状を理解できている人はとても少ないように思います。 ディープラーニングという言葉はAlexNetがでた2012年頃に流行り出しました。 実際に企業が仕事としてディープラーニングに手を出し始めたのはAWSがGPUインスタンスをリリースした頃からだと思うので2014年ぐらいからでしょうか。 まだ流行り出して5年も経っていない技術であるため、最新の研究レベルでもディープラーニングの全容は明らかになっていなかったり(参照: ディープラーニングの解釈に関するサーベイ論文) 、正しくディープラーニングを理解するための教科書や参考書などもま

                                                                  DeepLearning/機械学習を始めると必ずいるカス - BizDeep
                                                                • 人間のためのイケてるPython WebFramework「responder」、そして作者のKenneth Reitzについて - フリーランチ食べたい

                                                                  この記事は Python その2 Advent Calendar 2018 - Qiita の1日目です。 responderとは GitHub - kennethreitz/responder: a familiar HTTP Service Framework for Python 2018年10月に公開された イケてるPython WebFramework です。 requestsやpipenvなどの開発者である Kenneth Reitz が(おそらく)今年のHacktoberfest 2018 - DigitalOcean 用に開発したものだと思われます。 GitHubのタグを見ると(Topic: hacktoberfest2018 · GitHub )、hacktoberfestで2位 今年10月に公開されたのに関わらず既にStarが2000以上付いており、かなり勢いがあります

                                                                    人間のためのイケてるPython WebFramework「responder」、そして作者のKenneth Reitzについて - フリーランチ食べたい
                                                                  • 機械学習初心者が『Python 機械学習プログラミング』(速習コース)を読んだメモ - 無印吉澤

                                                                    きっかけ この記事を書いた人のレベル 今回の読書プラン Python 環境の構築 インストール先の環境 Anaconda (Python 3) のインストール 科学計算に関するライブラリのインストール サンプルの実行に必要なライブラリのインストール サンプルの実行 サンプルコードを実行していて引っかかったところ 3章 12〜13章 Python の勉強 速習コースを読んでみた感想 きっかけ 機械学習の重要性は、それこそ「ビッグデータ」という言葉が出てきた頃からいろいろな人が訴えていますが、最近は特にツールが充実して、敷居が下がってきたように感じています。 そろそろ自分でも機械学習関係のツールを使えるようになりたいと思っていたのですが、そんなときに「具体的なコード例が多くて読みやすい」という本書の評判を聞いて、読み始めました。 Python機械学習プログラミング 達人データサイエンティストに

                                                                      機械学習初心者が『Python 機械学習プログラミング』(速習コース)を読んだメモ - 無印吉澤
                                                                    • 【保存版・初心者向け】独学でAIエンジニアになりたい人向けのオススメのAI勉強方法 (2019年改定版) - Qiita

                                                                      追記 Pythonや機械学習がオンライン上で学べるAI Academyをnoteでも書きましたが、3/17日からほとんどのコンテンツを永続的に無料で利用できるよう致しましたので、是非この記事と合わせて使って頂けますと幸いです! AI Academy Bootcamp 6ヶ月35,000円にてチャットで質問し放題の環境で、機械学習やデータ分析が学べるサービスを提供しております。 数十名在籍しているデータサイエンティストや機械学習エンジニアに質問し放題の環境でデータ分析、統計、機械学習、SQL等が学べます。AI人材に必要なスキルを効率よく体系的に身に付けたい方は是非ご検討ください! https://aiacademy.jp/bootcamp はじめに 我々は、AI Academyというサービスを通じて、これまで1500名以上の方々に、プログラミング(Python)、統計的機械学習、深層学習(D

                                                                        【保存版・初心者向け】独学でAIエンジニアになりたい人向けのオススメのAI勉強方法 (2019年改定版) - Qiita
                                                                      • データサイエンティスト&機械学習(人工知能)エンジニアのスキル要件と、過熱する人工知能ブームが生み出す狂騒曲と(2018年2月版:追記あり) - 渋谷駅前で働くデータサイエンティストのブログ

                                                                        (Image by Pixaby) この記事は去年はてブ1100以上ついてしまった与太記事の続編です。その時はタイトルを読んで字の如く「データサイエンティスト」と「機械学習エンジニア」の満たすべきスキル要件(の2017年版)について考察したものでした。 で、まだ1年しか経ってないのに何でまた引き合いに出したのかというと、最近のメディア報道やニュースリリースの類などを見ていると「データサイエンティストにディープラーニングをやらせる」とか「高度な統計分析のできるエンジニアが必要」みたいなどう見ても色々混同している感のある内容が目に付くので、改めてちょっと自己流に交通整理してみようかなと思ったのでした。 特に、空前の人工知能ブームで「人工知能」の語が人口に膾炙すると同時に2014年頃にブームが終わったはずの「データサイエンティスト」の語が何故か復権してしまい、そこら中のメディアでかつて空回りした

                                                                          データサイエンティスト&機械学習(人工知能)エンジニアのスキル要件と、過熱する人工知能ブームが生み出す狂騒曲と(2018年2月版:追記あり) - 渋谷駅前で働くデータサイエンティストのブログ
                                                                        • 【悲報】Googleエンジニア「日本人は海外の発明を無視し、メイドインジャパンとしてパクりを展開する」 : IT速報

                                                                          Kerasの開発者であるFrançois Chollet氏の発言が話題に。またも、日本語で日本について苦言を呈しています。 Kerasは機械学習の分野で人気のライブラリ。しかし、日本ではChainerという国産ライブラリの方が人気であり、過去にはこれについてキレたことも。 関連:【悲報】Googleエンジニア、日本人に困惑する ちなみに、2chの機械学習スレでも、Keras厨とChainer厨が日々喧嘩を繰り広げています。先日はRebuildでも言及されていました。 https://rebuild.fm/181/ 今回のFrançois Chollet氏のツイートも、発端はChainerへの怒りと思われますが、その他にも同様の傾向がみられるんだとか。 西洋で新しい物が発明されると、最初日本はそれを無視する。数ヶ月後、made in japanのクローンの出現や、既存の日本製品が西洋の発明を

                                                                            【悲報】Googleエンジニア「日本人は海外の発明を無視し、メイドインジャパンとしてパクりを展開する」 : IT速報
                                                                          • ディープラーニングでアスキーアートを作る - Qiita

                                                                            はじめまして。 本業はアスキーアート (以下AA) 職人のOsciiArtといいます (本業ではない)。 AlphaGo対イ・セドルの対局を見て、「僕もディープラーニングで神AA職人を倒したい!」と思い、pythonをインストールしてちょうど一年の成果を書いていきます。 コードはこちらにアップしてあります。 https://github.com/OsciiArt/DeepAA ここで扱うアスキーアートとは ここで扱うAAとは、 こういうの……↓ ではなく、こういうの……↓ でもなく、こういうの……↓ ともちょっと違って、こういうの……↓ ではもちろんなく、こういうのです。↓ このような、線画を文字を作って再現した「トレースAA」と呼ばれるタイプのAAをここでは扱います。 詳細はwikipediaの「アスキーアート」のページの「プロポーショナルフォント」の項を参照してください。 wikipe

                                                                              ディープラーニングでアスキーアートを作る - Qiita
                                                                            • 手を動かしながら学べるディープラーニングの優良なチュートリアル - karaage. [からあげ]

                                                                              ディープラーニングは習うより慣れろかも ファッションでディープラーニングをしているディープラーニング芸人からあげです。私は、特に専門家でも何でもないのですが、機械学習に興味もって、ディープラーニングに関することブログでアウトプットしているうちに「AIに関する本に名前がクレジットされたり」「AI解析のオンラインコンテスト#Aidemynoteで特別賞受賞したり」「ラズパイマガジンという商業誌にAI関係で記事を書いたり」「ディープラーニングおじさんの記事がバズったあげくITmediaで取り上げられたり」と多少なりとも価値を提供できるようになってきました。 何の知識もバックグラウンドも、大した能力も無い自分が、どうやって知識を身につけることができたかというと、色々本も読んだのですが、実際に手を動かしてプログラムを組んで、実問題に対して試行錯誤した結果をブログにアウトプットし続けたことが大きいのか

                                                                                手を動かしながら学べるディープラーニングの優良なチュートリアル - karaage. [からあげ]
                                                                              • pythonを使った株価の自動収集 - Qiita

                                                                                Register as a new user and use Qiita more conveniently You get articles that match your needsYou can efficiently read back useful informationYou can use dark themeWhat you can do with signing up

                                                                                  pythonを使った株価の自動収集 - Qiita
                                                                                • 統計学・データサイエンスの勉強法

                                                                                  ここ数年、私はデータサイエンスについて学んでいます。おすすめの学習資料を紹介したいと思います。 教師用の教科書と初心者用の教科書 私自身、データサイエンスを学ぼうとして色々なソースを試してみました。残念なことに、日本語の良い学習資料は見つけられませんでした。どこかのブログで読んだことがありますが、教科書は教師用と学生用の二週類があるそうです。一つめは内容が既に分かっている教師の為の教科書で、日本はこのタイプです。もう一つのタイプの教科書は自学自習を目的に作られているので、教師なしで学ぶできる教科書になっているということで、アメリカはこのタイプの教科書が多いです。私自身、他の文系・理系の教科書を探した時もアメリカの教科書の方が分かりやすく、その本だけを読めば分かるようになっていると同じ印象を持ちました。 オンライン教育(MOOC) アメリカは科学教育に熱心であり、最近はやりのMOOCでも豊富

                                                                                    統計学・データサイエンスの勉強法