タグ

algorithmに関するs17erのブックマーク (9)

  • 単語の出現頻度を求める --- 興味語の抽出は簡単じゃありませんよ ---

    語文章から、単語の出現数を数えるためには、文章から単語を抽出しなくてはいけません。すなわち分かち書き(単語の間に空白などを入れる)しないといけません。 来ならば、分かち書きは大変な作業ですが、MeCab (和布蕪)やChasen(茶筌)などといった形態素解析ソフトがありますので、これの出力を使うと簡単です。形態素解析(ソフト)は、入力文を単語単位に分割し、かつその品詞を与えてくれます。 PerlRubyなどのスクリプト言語のモジュールとして、提供されていることもあります。ですが、たいていの場合そのようなモジュールを使わなくても、簡潔さを損なうことなく記述することができます。(*1) (*1) 格的に解析している人は除きます。多くの人が「分かち書き+品詞を知りたいくらい」だろうと想定しています。 まず分かち書き まず、日語文章を分かち書き形式に変換しないといけません。分かち書きす

  • 「最強最速アルゴリズマー養成講座」関連の最新 ニュース・レビュー・解説 記事 まとめ - ITmedia Keywords

    最強最速アルゴリズマー養成講座: そのアルゴリズム、貪欲につき――貪欲法のススメ アルゴリズムの世界において、欲張りであることはときに有利に働くことがあります。今回は、貪欲法と呼ばれるアルゴリズムを紹介しながら、ハードな問題に挑戦してみましょう。このアルゴリズムが使えるかどうかの見極めができるようになれば、あなたの論理的思考力はかなりのレベルなのです。(2010/9/4) 最強最速アルゴリズマー養成講座: 病みつきになる「動的計画法」、その深淵に迫る 数回にわたって動的計画法・メモ化再帰について解説してきましたが、今回は実践編として、ナップサック問題への挑戦を足がかりに、その長所と短所の紹介、理解度チェックシートなどを用意しました。特に、動的計画法について深く掘り下げ、皆さんを動的計画法マスターの道にご案内します。(2010/5/15) 最強最速アルゴリズマー養成講座: アルゴリズマーの登

  • 4chan BBS - Genius sorting algorithm: Sleep sort

    1 Name: Anonymous : 2011-01-20 12:22 Man, am I a genius. Check out this sorting algorithm I just invented. #!/bin/bash function f() { sleep "$1" echo "$1" } while [ -n "$1" ] do f "$1" & shift done wait example usage: ./sleepsort.bash 5 3 6 3 6 3 1 4 7 2 Name: Anonymous : 2011-01-20 12:27 >>1 Oh god, it works. But I don't like to wait 218382 seconds to sort '(0 218382)

    s17er
    s17er 2011/05/20
    あとでpythonで書いてみる
  • きれいなおねいさんのあつめかた:Bijostagramのはなし。 - TMBのおぼえがき

    Bijostagram(びじょすたぐらむ)というWebサービスを作ってみました。 Bijostagram - Cute Girls on Instagram きれいなおねいさんは、好きですか? Bijostagramとは? Bijostagramは、きれいなおねいさんの画像がたくさん眺められるサービスです(個人的に作りました)。一番の大きな特徴は、Instagramから自動的にきれいなおねいさんの画像を集めてくる、というところです。Bijostagramでは、集めてきたおねいさん画像をランダムに表示しています。 Instagramは写真版Twitterで、しかも撮影した画像をオサレな感じで加工できてツイートできるというサービス。2月末に公式のAPIが公開されたので、いじってみました。→インスタグラムのAPIについてはこちら Bijostagramは、画像抽出と画像配置のアルゴリズムをPer

    きれいなおねいさんのあつめかた:Bijostagramのはなし。 - TMBのおぼえがき
  • このページを見るには、ログインまたは登録してください

    Facebookで投稿や写真などをチェックできます。

  • サービス終了のお知らせ

    サービス終了のお知らせ いつもYahoo! JAPANのサービスをご利用いただき誠にありがとうございます。 お客様がアクセスされたサービスは日までにサービスを終了いたしました。 今後ともYahoo! JAPANのサービスをご愛顧くださいますよう、よろしくお願いいたします。

  • 再帰とジェネレータ

    back [English] 概要: ある種の問題は、再帰を使うと非常に効率的に記述できる。 しかし大量のデータを生成するような再帰的手続きは厳密に制御する必要があり、 そういったプログラミングは難しい。Python 2.2 以降から使用可能になった ジェネレータを使うと、簡潔なコードを維持しつつ、 こうした手続きをかんたんに制御することができる。 この文書で使われているソースコードは こちら。 プレインテキスト版は こちら。 はじめに 再帰は非常に強力なメカニズムです。 時にこれは混乱を招くこともありますが、ふつう再帰を使うと、問題を簡単に記述することができます。 ある手続きが扱うデータ量が指数的に増えるような場合、これはとくにあてはまります。 木構造の探索がいい例でしょう。木の各節点はひとつ以上の子を持っていますが、 下へ下へとたどっていくにつれて、節点の数は指数的に増えていきます。

  • オーダーを極める思考法

    プログラムの実行に掛かる時間を把握しておくのは、プログラミングを行う上で基的な注意点です。今回は、計算量のオーダーについて学びながら、TopCoderのMedium問題を考えてみましょう。 プログラムの実行時間 業務としてプログラミングをされている方には釈迦に説法かもしれませんが、プログラムの実行に掛かる時間を把握しておくのは、プログラミングを行う上で基的な注意点です。そしてこれは、TopCoderなどのコンテストでプログラムを組む際にもよく当てはまります。通常、こうしたことは感覚的に理解している方がほとんどだと思いますが、具体的にどれくらいのループを回すと何秒掛かる、といった基準を持っている人は少ないのではないでしょうか? 非常に基的なことですが、プログラムの実行時間に関して再確認しておきたいと思います。 TopCoderの制限に関して TopCoderでは、実行時間およびメモリ使

    オーダーを極める思考法
  • 1