並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 40 件 / 169件

新着順 人気順

内積 定義の検索結果1 - 40 件 / 169件

  • クォータニオンとは何ぞや?:基礎線形代数講座 - SEGA TECH Blog

    ---【追記:2022-04-01】--- 「基礎線形代数講座」のPDFファイルをこの記事から直接閲覧、ダウンロードできるようにしました。記事内後半の「公開先」に追記してあります。 --- 【追記ここまで】--- みなさん、はじめまして。技術本部 開発技術部のYです。 ひさびさの技術ブログ記事ですが、タイトルからお察しの通り、今回は数学のお話です。 #数学かよ って思った方、ごめんなさい(苦笑) 数学の勉強会 弊社では昨年、有志による隔週での数学の勉強会を行いました。ご多分に漏れず、コロナ禍の影響で会議室に集合しての勉強会は中断、再開の目処も立たず諸々の事情により残念ながら中止となり、用意した資料の配布および各自の自学ということになりました。 勉強会の内容は、高校数学の超駆け足での復習から始めて、主に大学初年度で学ぶ線形代数の基礎の学び直し 、および応用としての3次元回転の表現の基礎の理解

      クォータニオンとは何ぞや?:基礎線形代数講座 - SEGA TECH Blog
    • FLoCとはなにか - ぼちぼち日記

      1. はじめに Google がChrome/89よりトライアルを開始しているFLoC (Federated Learning of Cohorts)技術に対して、現在多くの批判が集まっています。 批判の内容は様々な観点からのものが多いですが、以前より Privacy Sandbox に対して否定的な見解を示してきたEFFの批判「Google Is Testing Its Controversial New Ad Targeting Tech in Millions of Browsers. Here’s What We Know.」が一番まとまっているものだと思います。 これまで Privacy Sandbox 技術に関わってきた身としては、各種提案の中でFLoCは特にユーザへの注意が最も必要なものだと思っていました。しかし、これまでのド直球なGoogleの進め方によって、FLoCのトラ

        FLoCとはなにか - ぼちぼち日記
      • 30分で完全理解するTransformerの世界

        はじめに 初めまして。ZENKIGENデータサイエンスチームのはまなすです。正式な所属はDeNAデータ本部AI技術開発部なのですが[1]、業務委託という形で今年度から深層学習系の開発等に携わっています。 深層学習界隈では、2017年に衝撃的なタイトル(Attention Is All You Need)の論文が発表されてから早5年半、元出自の機械翻訳タスクを大きく越えて、Transformer関連の技術が様々な領域で用いられる汎用アーキテクチャとして目覚ましく発展し続けています。 今回はそんなTransformerが現時点までにどのように活用されてきたか、また、どのように工夫されてきたかをざっくりと俯瞰し、流れをおさらいする目的の記事になります。本記事の大枠は、2021年時点でのサーベイ論文である A Survey of Transformers に倣いつつ、適宜、2023年2月上旬現在ま

          30分で完全理解するTransformerの世界
        • 放送大学マイルストーン('23)|lumpsucker

          はじめにこの記事は、放送大学の(主に情報コースを中心とする)学生さん向けに、私の履修済み科目の感想と主観的評価を共有して、履修計画の参考にしていただくことを目的に作成しました。下記の記事の通り、2019年-2020年の2年間で情報コースの科目を8割方履修したのでそれなりの網羅性があるかと思います。 (2023年2月追記)その後、選科履修生として履修した他コースの科目や大学院科目などを追加して112科目掲載しています。試験難易度については履修時期によって会場試験・在宅ペーパー試験・在宅Web試験が混在しているので参考程度でお願いします。 タイトルは私が現役生の時に通っていた大学の似たような評価システムから拝借しました。 以下の科目は基本的にナンバリングが低い順に並べています。閉講済みの科目も混じっていますが、記録と後継科目の参考のために残しておきます。あくまで全て(上記の記事にある通り、文系

            放送大学マイルストーン('23)|lumpsucker
          • 世界に衝撃を与えた画像生成AI「Stable Diffusion」を徹底解説! - Qiita

            追記: U-Netの中間層は常にSelf-Attentionとなります。ご指摘いただきました。ありがとうございます。(コード) オミータです。ツイッターで人工知能のことや他媒体の記事など を紹介しています。 @omiita_atiimoもご覧ください! 世界に衝撃を与えた画像生成AI「Stable Diffusion」を徹底解説! 未来都市にたたずむサンタクロース(Stable Diffusionで生成) 2022年8月、世界に大きな衝撃が走りました。それは、Stable Diffusionの公開です。Stable Diffusionは、テキストを受け取るとそれに沿った画像を出力してくれるモデルです1。Stable Diffsuionは10億個近いパラメータ数をもち、およそ20億個の画像とテキストのペア(LAION-2B)で学習されています。これにより、Stable Diffusionは入

              世界に衝撃を与えた画像生成AI「Stable Diffusion」を徹底解説! - Qiita
            • ゲーム作りとかCGとかに関わる数学(初歩)① - Qiita

              ゲーム作りとかCGとかに関わる数学(初歩)① 今回HIKKYさんのアドベントカレンダーに投稿するにあたって、別の温めてたネタはあったんですが諸事情により封印してしまったので、何か別のテーマにしようと考えました。 で、色々考えたのですが、特に思いつかなかったのでCG数学の初歩的な話をしようかなと思います。実際VKetCloudの中でも基本的な数学は必ず使われてますし。 あと「ゲームメーカーズ」さんの記事でも取り上げていただいた、僕のCEDEC+KYUSHU2023の数学のお話がやたらとウケがよかったため、数学の話で行くことにしました。 で最初に書いておくと、書きたかったことの半分もかけていません。 時間の都合上と、あと数式と頭が多すぎるのか、このドキュメントの編集が何度も落ちるからです。 と言うわけで、今回は概要と三角関数とベクトルの話だけにします。 あとは年末年始休みの間にでも続きを書きま

                ゲーム作りとかCGとかに関わる数学(初歩)① - Qiita
              • 暗記数学が正しい

                受験生諸君は、悪質な情報に惑わされないように。 暗記数学の要旨和田秀樹らによるいわゆる「暗記数学」の要点をまとめると、以下のようになるだろう。 数学で重要なのは、技巧的な解法をひらめくことよりも、基礎を確実に理解することである。 これは従来、数学の入試問題を解くのに必要なのが曖昧模糊とした「ひらめき」や「才能」だと思われていたことへのアンチテーゼである。「暗記」という語はその対比であり、特別な才能がなくとも、基礎事項を確実に習得することで、入試を通過できる程度の数学力は身に付くことを主張している。 そもそも、大学入試は大学で研究をする上で重要な知識や考え方の理解度を問うているわけであって、徒な難問を出して受験生を試しているわけではない。したがって、そのような重要事項(つまり、教科書の基礎事項や、数学を活用する上で頻繁に出てくるような考え方)を身に付けるのが正攻法である。 そのための教材とし

                  暗記数学が正しい
                • Stable Diffusion の仕組みを理解する - ABEJA Tech Blog

                  この記事は、ABEJAアドベントカレンダー2022 の 19 日目の記事です。 こんにちは!株式会社 ABEJA で ABEJA Platform 開発を行っている坂井です。 世間では Diffusion Model 使った AI による画像生成が流行っているみたいですね。 自分は元々 Computer Vision 系の機械学習エンジニアだったんですが、この1年くらいは AI モデル開発ではなくもっぱらバックエンド開発メインでやっていて完全に乗り遅れた感あるので、この機会に有名な Diffusion Model の1つである Stable Diffusion v1 について調べてみました!*1 では早速本題に入りたいと思います! Stable Diffusion v1 とは? Denoising Diffusion Probabilistic Model(DDPM) 学習時の動作 for

                    Stable Diffusion の仕組みを理解する - ABEJA Tech Blog
                  • "Watson's Page エネルギーの発見が遅れた理由・我々は筋肉にだまされている"

                    物理の話題 エネルギーの発見と筋肉による錯覚について エネルギー・近くて遠い存在   "我々は横紋筋にだまされている" すべての分野において言えることであるが、”人類の知識や重要な発見は大勢の人間の経験の積み重ねによって得られたものである。” あたかも、力学はニュートンのような一人の天才が現れて,出来上がったように思われがちであるが、物理学においても、上のことは決して例外ではない。 その典型的な例が「エネルギー保存則の発見」である。 エネルギー保存則の発見までの長い道のり ニュートンの著書「プリンキピア」が出版されたのは、1687年であるが、ヘルムホルツによる理論的な「エネルギー保存則」の定式化は 1847年である。 物理学者が「エネルギー」の重要性を認識するには、ニュートン力学の誕生から、なんと 2世紀近くの歳月を要している。 その間に、ニューコメンの蒸気機関の発明(1712年)、さらに

                    • 浮動小数点型の算術とお近づきになりたい人向けの記事 - えびちゃんの日記

                      お近づきになりたい人向けシリーズです。 いろいろなトピックを詰め込みましたが、「これら全部を知らないといけない」のようなつもりではなく、いろいろなことを知るきっかけになったらいいなという気持ちなので、あまり身構えずにちょっとずつ読んでもらえたらうれしい気がします。 まえがき 予備知識 規格 用語 精度という語について 記法 表現について 有限値の表現について エンコードについて 丸めについて よくある誤差や勘違いの例 0.1 = 1 / 10? 0.1 + 0.2 = 0.3? 整数の誤差 Rump’s Example 基本的な誤差評価 用語に関して 実数の丸め 有理数の丸め 基本演算の丸め 差について 複数回の演算 補題たち 桁落ちについて Re: Rump’s example 融合積和 数学関数に関する式の計算 誤差の削減に関して 総和計算 数学関数の精度について 比較演算について 雑

                        浮動小数点型の算術とお近づきになりたい人向けの記事 - えびちゃんの日記
                      • RAGの実装戦略まとめ - Qiita

                        それでは以下、簡単なデモを含めながら個別に説明していきます。 1. ハイブリッドサーチ こちらは、性質の異なる複数の検索方式(例えばベクトル検索とキーワード検索)を組み合わせて検索精度を向上させる手法になります。 各検索方式単体の場合に比べ、性質の異なる検索方式を組み合わせ、ある種いいとこ取りをする事で、検索性能の向上が期待できます。 今回はBM25でのキーワードベースの類似度検索と通常のベクトル検索を組み合わせていきます。 BM25について簡単に説明しておくと、文脈や文章構造は完全に無視した上で、文書内の単語を全てバラバラに分割し、文書内の各単語の出現頻度と文書間におけるレア度を加味した特徴量を算出します。 つまり、特定の文書内の各単語の数をカウントしてヒストグラムを作れば、似たような文書には同じような単語がよく出るはずなので(同じようなヒストグラムの形になるので)、類似度が高くなる性質

                          RAGの実装戦略まとめ - Qiita
                        • ChatGPTを探す旅に出させていただきます | DevelopersIO

                          文書の数が多い場合、単語の種類(ボキャブラリ)も多くなり単語の次元が大幅に増えていきます。 一方、一つの文書に含まれる単語の数には限りがあるため、これは全体として疎行列になります。 また、単語が各次元として扱われますが、文書ごとの出現順序など、単語間での関連性を示す情報は抜け落ちたものとなります。 それに対して低次元(通常数百次元程度)の密な行列で単語の意味を定義する方法があります。 これは、「分散表現」や「埋め込み表現」と言われるものになっております。 この表現を獲得するため手法は様々なものがありますが、ここではWord2Vecを紹介します。 元論文 : Efficient Estimation of Word Representations in Vector Space 具体的な実装についての解説 : word2vec Parameter Learning Explained Wor

                            ChatGPTを探す旅に出させていただきます | DevelopersIO
                          • 3Dゲームエンジンで使われている関数を数学的に説明するとこうなる

                            ベクトル演算のひとつである内積は、二つのベクトルの関係を一つの数字に変換してくれる便利な存在です。そんな内積によるベクトルのエンコードが3Dゲームにおいてどのように役立っているかをエンジニアのMing-Lun "Allen" Chouさんが説明しています。 Gamedev Tutorial: Dot Product, Rulers, And Bouncing Balls | Ming-Lun "Allen" Chou | 周明倫 https://www.allenchou.net/2020/01/dot-product-projection-reflection/ まずは「ベクトルの内積」です。2次元空間上にある始点が同じ2つのベクトルaとベクトルbの内積について考えてみます。感覚的に内積を説明すると、ベクトルbに垂直な方向から光を当てたとき、ベクトルb上にできるベクトルaの影の長さとベク

                              3Dゲームエンジンで使われている関数を数学的に説明するとこうなる
                            • ネットワーク分析から直感的に理解するTransformerの仕組みと処理の流れ - あつまれ統計の森

                              グラフ理論と隣接行列 グラフ理論は点と線で物事を表す理論です。たとえば駅の路線図では下記のように駅を点、路線を線で表します。 東京メトロホームページより 上記の路線図では「駅と駅が隣接するかどうか」を中心に取り扱う一方で、それぞれの位置や方角などは厳密に再現はされません。このように、「隣接するかどうか」のみに着目して物事を表す際の理論を「グラフ理論」といいます。 グラフ理論では点をノード(node)、線をエッジ(edge)、全体をグラフ(graph)と定義します。数式で表すと$G = (V,E)$のように表しますが、$V$が頂点のVertice、$E$がEdge、$G$がGraphであるとそれぞれ解釈すると良いです。 グラフの表記法に関しては主に$2$通りあり、「①図を用いる」と「②隣接行列を用いる」をそれぞれ抑えておくと良いです。例があるとわかりやすいので下記のWikipediaの例を元

                                ネットワーク分析から直感的に理解するTransformerの仕組みと処理の流れ - あつまれ統計の森
                              • 推薦システムにおいて線形モデルがまだまだ有用な話 | CyberAgent Developers Blog

                                本記事は、CyberAgent Advent Calendar 2022 19日目の記事です。 目次 はじめに 問題設定 協調フィルタリングのための線形モデル iALS EASE 関連する非線形モデル 実務活用 おわりに はじめに メディア DSC所属の機械学習エンジニアで、タップルの推薦システムを担当している橋爪 (@runnlp)です。 最近、推薦システムを触り始めました。推薦手法は、協調フィルタリング、コンテンツベース、ハイブリッドなど様々ですが、今回は昔から今に至るまで長く使われている協調フィルタリングについてです。 協調フィルタリングではDeep系のモデルがたくさん出る中で、RecSys2022で発表された論文では10年以上前から使用されている線形モデル(iALS)がDeep系のモデルに匹敵する結果であると報告されており興味深いです。また、推薦システムを開発するにあたって、問題設

                                  推薦システムにおいて線形モデルがまだまだ有用な話 | CyberAgent Developers Blog
                                • GPT-3.5-turboの新機能を使ってCVPRの論文を良い感じに検索・推薦・要約するシステム

                                  はじめに 5月からTuringに中途入社した棚橋です。リクルートで広告配信システムの開発や量子アニーリングに関する研究開発に関わっていました。現在、Turingのリサーチチームで完全自動運転システムの研究開発に取り組んでいます。 3行でまとめ 今月開催されるCVPR2023では約2400本もの論文が発表されるため、見るべき論文を事前に検索しておきたい。 社内で行われた大規模言語モデル(LLM)ハッカソンをきっかけに、LLMのEmbeddingを用いて論文の「検索・推薦・要約」システムを作成し公開した。 検索クエリに文章を使った曖昧な検索が行えたり、類似論文の推薦ができる。6/13にアップデートされたGPT3.5の新機能であるファンクション機能を使うことで、複数観点に分けて研究内容の要約を出力させた。 ↓ 今回作成した、LLMを使ったCVPR論文検索システム 事の発端 Turingは、ハンド

                                    GPT-3.5-turboの新機能を使ってCVPRの論文を良い感じに検索・推薦・要約するシステム
                                  • ChatGPT の仕組みを理解する(前編) - ABEJA Tech Blog

                                    こんにちは!株式会社 ABEJA で ABEJA Platform 開発を行っている坂井(@Yagami360)です。世間では ChatGPT などの大規模言語モデル(LLM)による対話型 AI が盛り上がってますね。クオリティーも凄いし AI 業界以外でも盛り上がってると嬉しいですよね。この数年で一段と AI の社会実装が業界以外の人にも目に見える形で進んできたなあと実感しております。 自分は普段業務では ABEJA Platform という AI プロダクトやその周辺プロダクトのバックエンド開発とフロントエンド開発をやっているのですが、AI 業界所属していながら ChatGPT などの LLM 全然追いかけれていない状態になっちゃてて自責の念にかられているので、このブログ執筆という良い機会に ChatGPT の仕組みについて調べてみました。 本記事の対象読者としては、以下のようになりま

                                      ChatGPT の仕組みを理解する(前編) - ABEJA Tech Blog
                                    • 線形代数演習講義へのjulia導入を考える

                                      本記事はJulia Advent Calendar 2022の12/23の記事です。 東京大学で働いている松井と申します。 線形代数の講義における演習(実際にコードを書き行列演算を行う)の重要性を感じています。 そのためにjuliaを使えないかと思い至り、pythonとの比較に焦点を当て思っていることを述べます。 線形代数における演習の意義 線形代数は工学全般において重要で基盤的な学問体系ですが、なかなかとっつきにくいものです。その理由の一つは線形代数の諸アルゴリズムは最終的には計算機で実行するにも関わらず、学生は自分の手を動かしてコーディングする機会が少ない点だと感じます。多くの大学のカリキュラムでは大学初年次に線形代数講義があると思いますが、座学がメインであることが多いと思います。本当は、座学と並行して実際にコーディングして行列演算を行う「演習講義」があれば、理解が深まるだろうと感じま

                                      • 線形代数を解説!高校レベルから学ぶ入門/基礎記事まとめ

                                        【随時更新】線形代数学の入り口の解説記事総まとめページ このページは、高校で線形代数の基礎(行列)を習わなかった大学生と、機械学習などで線形代数の知識が必要になった社会人の方に向けて ・0から(高校数学のベクトルが分からない人でも) ・まずは、おおまかにでも理解出来る様に ・例をあげながら、線形代数の基礎を解説した記事 をまとめたページです! (随時更新・記事の追加を行なっているので、ぜひブックマークB!やpocket、お気に入り等に登録して何度も読んで頂ければ幸いです!) 目次を見て、必要な記事から読んでいただいても良いですし、上から順に読んでいただいても構いません。 ↓目次を「タップ・クリック」すると、その記事へ飛びます↓ 線形代数の基礎知識編(高校数学:主にベクトルの復習) では、線形代数の超入門の前提となる「キソ分野」である、 「ベクトル(高校数学B)」と「集合と写像」の記事から紹

                                          線形代数を解説!高校レベルから学ぶ入門/基礎記事まとめ
                                        • 行列入門

                                          行 列 入 門 i 本教材について 本教材は,行列の基本的な性質を学ぶために作成したものです。 行列については,平成 21 年告示の学習指導要領における新設科目「数学活用」の「社会 生活における数理的な考察」の「数学的な表現の工夫」の内容となりました。行列は現代数 学の基礎的な内容として様々な場面で活用されているにもかかわらず,繁雑な計算の意味 やどのような場面で活用されるのかがわかりにくかったことから, 「数学活用」の内容とし たものです。ただし, 「数学活用」の内容としたことから内容は大綱的に示すことになりま した。そこで,専門教科理数科の「理数数学特論」の内容としてはそれ以前のもの(平成 11 年告示の学習指導要領における数学 C の内容)をそのまま残すとともに,高等学校数学を 超える内容に興味をもつ生徒には「数学活用」の内容を踏まえ「線型代数学入門」のような 学校設定科目を設けて指

                                          • インフラ一筋のおじさんが画像生成AI“Stable-Diffusion”を読み込んでみる件 | IIJ Engineers Blog

                                            地方拠点の一つ、九州支社に所属しています。サーバ・ストレージを中心としたSI業務に携わってましたが、現在は技術探索・深堀業務を中心に対応しています。 2018年に難病を患ったことにより、定期的に入退院を繰り返しつつ、2023年には男性更年期障害の発症をきっかけに、トランスジェンダーとしての道を歩み始めてます。 なんだかAIって流行ってますよねー こんにちわ。九州支社で細々と遊んで検証業務にいそしんでいるとみーです。 2022年3月から、どーしても「名前だけ知ってる状態」ってのにもやもやしていて、Deeplearningに手を付けたものの、あまりに内容が奥深すぎて沼にドはまりして周囲に「たすけてぇ、たすけてぇ」って叫んでいる素敵な日々を過ごしています。 取りあえず画像処理としてディープフェイク、NLP(Natural Language Processing:自然言語処理)として簡易チャットボ

                                              インフラ一筋のおじさんが画像生成AI“Stable-Diffusion”を読み込んでみる件 | IIJ Engineers Blog
                                            • RecSys 2019 ベストペーパーを読んだメモ - Qiita

                                              紹介論文 Are We Really Making Much Progress? A Worrying Analysis of Recent Neural Recommendation Approaches (RecSys 2019) 日本語では「本当にそんなに進捗出てるの? -或いは最近のNN推薦手法に対する警鐘-」という感じだろうか。 元論文はこちら https://arxiv.org/pdf/1907.06902.pdf 概要 DNNが登場してから推薦分野でもDeepXXな手法が増えている 新手法の登場頻度が高いため、代表的なタスクであるtopN推薦に対してすらSOTAが何か追えなくなっている そこでトップ会議(KDD, SIGIR, WWW, RecSys)のDNN関連研究18本を追試した 18本のうち、現実的な努力を行った上で再現できたのが7本 (RecSysでの発表によると、)

                                                RecSys 2019 ベストペーパーを読んだメモ - Qiita
                                              • 機械学習について一回挫折してしまったエンジニアが何とかお仕事で機械学習を使えるようになるまで - Qiita

                                                初めに 4x歳越えのエンジニアにとって機械学習は何やらややこしいもの、本を開けば数式があり、pythonがあり、何それおいしいの?5年ほど前にCourceraで機械学習を学ぼうとしたがあっさりAndrew Ng先生はWeek4で挫折。"教師付き学習"と"教師なし学習"のちがいなんだっけ? 想定している読者 IT業界で別のキャリアを持っていて機械学習のキャリアをみにつけたい、あるいは身につけようとしたが挫折してしまった人 自分のキャリアについて ホストの開発エンジニアから始まり、クライアントサーバー、Webアプリと開発系を云十年。その後ネットワーク、インフラ系を主な仕事にしています。 機械学習とのかかわり 5年ほど前に機械学習の勉強をしようとしたが、何をやっているか意味が分からず、あっさり挫折。その後は雑誌などで読む程度。 注)データ分析・機械学種・人工知能については、この文章では厳密に分け

                                                  機械学習について一回挫折してしまったエンジニアが何とかお仕事で機械学習を使えるようになるまで - Qiita
                                                • 2019年、俺の読んだ論文50本全部解説(俺的ベスト3付き) - Qiita

                                                  第一位 Focal Loss for Dense Object Detection 物体検知のためのFocal Loss これは不均衡データに対処するための損失関数Focal Lossを提案した論文なのですが, とにかくそのシンプルさにやられました. 画像のFLの式を見てください. たったこれだけです. ptは正解ラベルに対する予測値なのですが, ptが大きければ大きいほど損失値をしっかり抑えられるように設計された関数となっています. 正解ラベルに対して0.6と予測するサンプルを学習に重要視せず, 0.3とか0.1とか予測しちゃうサンプルにしっかりと重要視するのです. 自分も7月くらいまでは不均衡データに関する研究していたのですが, 自分が考えた多くのアイディアが結局Focal Lossの下位互換に帰結してしまうのです. しかもこの損失関数の汎用性は非常に高く, あらゆるタスクに入れること

                                                    2019年、俺の読んだ論文50本全部解説(俺的ベスト3付き) - Qiita
                                                  • 主成分分析(PCA)の数学的な理論とPythonによる実装

                                                    $$ \newcommand{\bm}[1]{\mathbf #1} $$ 主成分分析(PCA)の数学的な理論とPythonによる実装¶ Author: Yuki Takei (noppoMan) Github: https://github.com/noppoMan Twitter: https://twitter.com/noppoMan722 Blog: https://note.com/noppoman これは、noteの主成分分析の背景にある数学理論の話(最適化問題)の本文です。 主成分分析の数学的な理論の理解に必要な知識¶ 主成分分析は、アルゴリズム的な観点で見るとデータの分散を最大化させる最適化問題であり、その理論は数学(とくに微分学、線形代数)により与えられている。以下は、主成分分析で使われる数学の分野をざっくりとリストしたものである。 データ分析 分散、共分散 解析学 多

                                                      主成分分析(PCA)の数学的な理論とPythonによる実装
                                                    • 仕事用にTransformer/BERTの情報をまとめる – かものはしの分析ブログ

                                                      都内の事業会社で分析やWebマーケティングの仕事をしています。大学・大学院では経済学を通じて統計解析を行うなどしておりました。企業に勤めてからは、機械学習やテキストマイニング、クローリング技術などに関心を持っています。 Twitterアカウント Mr_Sakaue( SKUE ) GitHub 読書メーター ほしいものリスト 最近、『Transformerによる自然言語処理』という書籍を買って、これまであまり追いかけていなかったTransformerについて仕事でカジュアルに使えるレベルまで色々と準備してみようと思い、その過程で見つけた色々な情報をまとめてみました。 以前、『BERTによる自然言語処理入門: Transformersを使った実践プログラミング』も買って、写経しながら試していたのですが、仕事であまり使う機会がなかったのであまり身につかなかったです。その反省も込めて、仕事でその

                                                        仕事用にTransformer/BERTの情報をまとめる – かものはしの分析ブログ
                                                      • Python(PyTorch)で自作して理解するTransformer

                                                        1. はじめに Transformerは2017年に「Attention is all you need」という論文で発表され、自然言語処理界にブレイクスルーを巻き起こした深層学習モデルです。論文内では、英語→ドイツ語翻訳・英語→フランス語翻訳という二つの機械翻訳タスクによる性能評価が行われています。それまで最も高い精度を出すとされていたRNNベースの機械翻訳と比較して、 精度(Bleuスコア) 訓練にかかるコストの少なさ という両方の面で、Transformerはそれらの性能を上回りました。以降、Transformerをベースとした様々なモデルが提案されています。その例としては、BERT,XLNet,GPT-3といった近年のSoTAとされているモデルが挙げられます。 ここで、「Attention is all you need」内に掲載されているTransformerの構造の図を見てみま

                                                          Python(PyTorch)で自作して理解するTransformer
                                                        • いま「新しい数学」が必要だ。助けて数学者!|shi3z

                                                          最初に言っておくが、僕は数学は全く苦手だ。数学が得意な人から見たらかなり的外れなことを言ってるのかもしれないが、僕にとっては切実な悩みなのである。「そんなのは簡単だよ」という人がいたらどうか教えて欲しい。 点がある。 これを0次元と言う。 点が横に並行移動して伸びて線になる。この線は無限大の長さまで伸びることができる。これを一次元という。 任意の長さ1の線が縦に1だけ動く、正方形になる。これを二次元と言う。 正方形を長さ1だけ今度は奥行方向に伸ばす。立方体になる。これを三次元という。 ここまでに「3つの方向」が出てきた。横、縦、奥行。 そのどれでもない四つ目の方向を考える。ただしこれは「時間軸」ではない。自由に行き来できる縦、横、奥行、ではない四つ目の「方向」だ。 立方体をそっち側の方向に動かす。これを超立方体といい、この空間を4次元という。 この長立方体をさらに「べつの方向」に動かす。こ

                                                            いま「新しい数学」が必要だ。助けて数学者!|shi3z
                                                          • 機械学習エンジニア1年目の自分へのおすすめ書籍

                                                            はじめに 本記事はBrainPadアドベントカレンダー2021に寄稿しています。 私は現在、株式会社BrainPadで新卒3年目の機械学習エンジニアとして働いています。BrainPadでは福利厚生の一環として、外部の研修や書籍の購入、各種資格の取得に利用できるスキルアップエイドという制度が用意されています。 私はこの制度を主に技術書やビジネス書の購入のために利用しており、機械学習エンジニアとしての能力向上を図っています。本記事では私がこれまでに購入した書籍の中から、機械学習エンジニアとして働く上で参考になったと感じた書籍を振り返っていきます。 機械学習エンジニアの能力とは 現在は多くの企業で、データサイエンティスト、機械学習エンジニア、MLOpsエンジニアといったポジションが作られていると感じます。これらの職種に必要とされる能力は、データの性質や業務への関わり方によって変わると考えられ、一

                                                              機械学習エンジニア1年目の自分へのおすすめ書籍
                                                            • 機械学習エンジニアのための将棋AI開発入門その1 | やねうら王 公式サイト

                                                              最近、機械学習を勉強している人が増えてきたので、簡単な機械学習ならわかるよといった人たち向けに将棋AIの開発、特に評価関数の設計について数学的な側面から書いていこうかと思います。線形代数と偏微分、連鎖律程度は知っているものとします。 3駒関係 3駒関係はBonanzaで初めて導入された、玉と任意の2駒との関係です。この線形和を評価関数の値として用います。評価関数とは、形勢を数値化して返す数学的な関数だと思ってください。 この3駒関係を俗にKPPと呼びます。King-Piece-Pieceの意味です。将棋の駒は40駒ありますので、{先手玉,後手玉}×残り39駒×残り38駒/2 通りの組み合わせがあります。この組み合わせは1482通りあります。Cをコンビネーション記号とすると、次のようになります。 $$ 2 \times {}_{39}C_{2}= 2 \times \frac{39 \tim

                                                              • はじめての自然言語処理 BERT を用いた自然言語処理における転移学習 | オブジェクトの広場

                                                                前回は Rasa NLU を用いて文章分類と固有表現抽出について紹介しました。今回は昨年後半に話題となった BERT について説明し、chABSAデータセットを用いた感情分析での実験結果、アプリケーションへの組み込み方などを紹介します。 1. 始めに 本記事では Google の BERT について、その概要を紹介し、BERT の事前学習済みモデルを用いてファインチューニングにより独自のモデルを構築することを念頭に、BERT の入出力インタフェースや学習データの構造を説明します。そして、ファインチューニングにより独自のモデルを構築する例として、chABSA データセットを用いた感情分析モデル生成の実験結果およびアプリケーションから利用する際のポイントを紹介します。 2. BERTの概要 BERT (Bidirectional Encoder Representations from Tra

                                                                  はじめての自然言語処理 BERT を用いた自然言語処理における転移学習 | オブジェクトの広場
                                                                • モデルパラメータの算術 - ジョイジョイジョイ

                                                                  深層モデルのパラメータを一列に並べてベクトルにします。このベクトルは大規模なモデルであれば何十億次元にもなります。一見、意味のない数値の羅列のようですが、このベクトルはベクトルとして深い意味があることが分かってきています。例えば、 と を異なるパラメータベクトルとすると、 や をパラメータとして持つモデルはちゃんと機能します。本稿では、このようなモデルパラメータの算術を用いた手法とその背後にある理論について解説します。 モデルスープ タスクベクトル モデルパラメータとニューラルタンジェントカーネル おわりに モデルスープ モデルスープ [Wortsman+ ICML 2022] は複数のモデルパラメータを平均することで性能を上げる手法です。事前学習モデル からはじめて、様々なハイパーパラメータで訓練した結果のパラメータを とします。これらを平均したベクトル は個々のモデルよりも性能が高く、

                                                                    モデルパラメータの算術 - ジョイジョイジョイ
                                                                  • 制御工学関連書籍の世界 - Qiita

                                                                    こんにちは. watawatavoltageです.この記事では,制御工学関連書籍の世界について書きたいと思います. この記事は,完成した状態で投稿するのではなく,随時更新していくタイプの記事です. 「はじめに」では,なぜこのような記事を書くのか説明します. コメント欄で,紹介してほしい書籍を書いていただけたら,随時反映していきますので,よろしくお願いいたします. #はじめに みなさんはこんな経験ないでしょうか? この制御の本わからん!! なんでこの数式こうなんねん!! 教授が「〇〇制御探せ」って言ってきたけどどこに書いてあんねん!! あれあの式どこに書いてあったっけ?? 輪講におすすめの本ないかな?? プログラムから理解したいな~~ この本買えばいけるかな~ 体系的学びたい などなど尽きないと思います(箇条書きは随時追加します.コメント欄でも受け付けます). 僕もいつも経験しています. そ

                                                                      制御工学関連書籍の世界 - Qiita
                                                                    • リッジ回帰とラッソ回帰の理論と実装を初めから丁寧に - Qiita

                                                                      はじめに 前回の記事で重回帰分析の導入をしてみたので、今回はその続きということで、2つ同時にやってみたいと思います。 ベクトルの微分公式については下記のブログが参考になります。 もしこの記事がお役に立てた時はQiitaのイイねボタンを押していただけると励みになります。 参考記事 「ベクトルで微分・行列で微分」公式まとめ 重回帰分析 リッジ回帰について考える際に、重回帰分析の理解はマストになるのでここでも見ていこうと思います。式変形については、前回の記事で詳しく導入したので少しだけ端折っていきます。 準備 説明変数$x_1, x_2, x_3, \cdots, x_m$を$\boldsymbol{x}$($x$のベクトル)とする 予測値を$\hat{y}$とする($\hat{y}$はスカラー) 回帰係数を$w_1, w_2, w_3, \cdots, w_m$を$\boldsymbol{w}

                                                                        リッジ回帰とラッソ回帰の理論と実装を初めから丁寧に - Qiita
                                                                      • 近傍探索ライブラリ「Annoy」のコード詳解 - ZOZO TECH BLOG

                                                                        はじめまして、ZOZO研究所福岡の家富です。画像検索システムのインフラ、機械学習まわりを担当しています。 今回は画像検索システムでお世話になっているAnnoyについてじっくり紹介したいと思います。 目次 目次 Annoyについて 近傍探索について Annoyのソースコードを読むときのポイント AnnoyIndexというクラスのインスタンスを作る インストール過程について PythonのC/C++拡張 Annoyの実装 1. add_item 2. build 3. get_nns_by_vector 4. build再考 他に問題となる点について CPU依存部分 ディスクかメモリか まとめ さいごに Annoyについて Annoyは、SpotifyによるPython近傍探索ライブラリです。 github.com 弊社のテックブログでも以前に取り上げています。 techblog.zozo.c

                                                                          近傍探索ライブラリ「Annoy」のコード詳解 - ZOZO TECH BLOG
                                                                        • テンソルが意味不明な物理学習者へ: 共変ベクトルと反変ベクトルからテンソルまで|vielb

                                                                          物理の本ではよく, 「反変ベクトルとは~~という変換則をもち, 共変ベクトルは・・・という変換則をもつものとして定義される」と説明がなされますが, 初学者にとってはなぜ唐突にこのような定義がされるのか非常にわかりにくいと思います. そこでこのページでは数学的によりシンプルな定義を採用し, 一点の曇りなく自然に反変ベクトルと共変ベクトルが導入されることを説明します. さらに2つの拡張としてテンソルが自然に導入されることもみていきます. 以下では$${\left(e_i\right)_{1\leq i\leq n}}$$を$${n}$$次元実ベクトル空間$${V}$$の基底とします. 複素ベクトル空間の場合も以下の$${\mathbb{R}}$$を$${\mathbb{C}}$$に変えるだけで全て上手く成り立ちます. このページと同じ内容のPDFも用意していますので適宜ご利用ください. 前提知

                                                                            テンソルが意味不明な物理学習者へ: 共変ベクトルと反変ベクトルからテンソルまで|vielb
                                                                          • 変分法 −無限次元空間の臨界点を見出す− - Laborify

                                                                            こんにちは。高橋 和音 (Kazune Takahashi) と申します。現在は、東京大学大学院 数理科学研究科で特任研究員をしております。この記事では、変分法の概説を試みます。変分法は、微分方程式を考察する代表的な手法です。自己紹介がわりに、どうして変分法を専門にしたのかまず話したいと思います。 私は、大学の数学を勉強し始めてから、積分の世界の素晴らしさに魅了されました。 高校までですと、積分は原始関数を介して求めます。ところが、大学以降に勉強する高度な手法を使うと、例えば原始関数が書けない関数の定積分の正確な値が求まるケースがあります。また、正確な値を求めることができずとも、ある値よりも小さい or 大きいことが分かることが重要である場面も増えてきます。そういう一連の手法が好きになりました。 以下で「汎関数」が出てきますが、変分法で使う汎関数は、関数の積分で書かれます。変分法は、積分を

                                                                              変分法 −無限次元空間の臨界点を見出す− - Laborify
                                                                            • Softmax関数をベースにした Deep Metric Learning が上手くいく理由 - Qiita

                                                                              はじめに Deep Learningを使った距離学習(Metric Learning)では、Contrastive LossやTriplet Lossなどを用いて、画像間の類似性(や非類似性)を直接学習していく方法が広く利用されていますが、学習データの組み合わせや選び方が難しく、学習自体が難航するケースが多い事も知られています。それだけに、これまで様々な改良と工夫が提案されています。 しかし、最近はこのような学習データ選びに難航することなく、一般的なクラス分類タスクの感覚で、Softmax関数をベースに学習できるMetric Learningが注目を浴びています。ArcFaceなどはその代表的手法でこちらで詳しく説明されています。 Softmax関数をベースにしたMetric Learningがうまくいく理由、またさらなる改良の余地はあるのか?これらに関して少し紹介しようと思います。 Ce

                                                                                Softmax関数をベースにした Deep Metric Learning が上手くいく理由 - Qiita
                                                                              • iALSによる行列分解の知られざる真の実力

                                                                                以下では、この表データは \(X\) という行列にまとめられているとします。上記テーブルに含まれる user_id 数を \(N_U\) , item_id 数を \(N_I\) とするとき、 \(X\) は \( N_U \times N_I\) 行列であり、その第 \(i\) 行は user_id として \(\mathrm{user}[i]\) を持つユーザーに、第 \(j\) 列 は item_id として \(\mathrm{item}[j]\) を持つアイテムに対応するとします。このマッピングのもと、 \(X\) の \(i\) 行 \(j\) 列の要素は、以下の式で与えられます。 $$ X_{ij} = \begin{cases} 1 & (\text{if } \mathrm{user}[i] \text{ and } \mathrm{item}[j] \text{ had

                                                                                  iALSによる行列分解の知られざる真の実力
                                                                                • StyleGANを遊び尽くせ!! ~追加学習不要の画像編集~ - Qiita

                                                                                  はじめに AdventCalender論文24日目担当のぱしふぃんです。 突然ですが,最近このような論文1が出ました。 テスト https://t.co/QoXamqHB9w — ぱしふぃん (@pacifinapacific) December 21, 2019 なんとただの1枚絵をVtuberのモデルにできちゃうのです。ニコニコに上がっている解説動画では賞賛のコメントが多数寄せられていました。 これはすごい!ということで私も読んだのですが、データセットを作る段階ですごい労力を費やしているようでした。3dモデル1つ1つを目を閉じたり、開けたり、顔を傾けたりと差分をとり、ラベル付けしていくのはとても大変です。 「そんなラベル付けの手間を失くして似たようなことがやりたい!!」 その一つの可能性として今回StyleGANに着目してみます。StyleGANは滅茶苦茶綺麗な画像を生成できるモデルで

                                                                                    StyleGANを遊び尽くせ!! ~追加学習不要の画像編集~ - Qiita