タグ

qiitaとU-Netに関するstibbarのブックマーク (2)

  • Deep U-Netで自動歌声分離 - Qiita

    Chainer Advent Calendar 2017 2日目です。 まえがき 画像認識や音声認識で深層ニューラルネットワークの威力が目立ち始めた頃、何故か(結構親和性が高そうな)音楽情報処理(MIR)の分野ではそっち方面での動きは鈍く、応用してみた論文も言うほど目覚ましい成果は無かった印象でした。そんなMIR界もようやくDeepLearningブームが来ているようで、Deepな論文がどっかんどっかん投稿され、ビッグなデータセットが公開され、MIREX(音楽情報処理アルゴリズムのコンテスト的なやつ)でも勝ちはじめ、ISMIR(音楽情報処理の国際学会)の冒頭演説でネタにされる位には流行るようになりました。 というわけで今年のISMIRの深層学習関連発表から比較的わかりやすそうなものを選んで、Advent Calendarのネタにさせて頂くことにしました。稿では音楽の歌声分離タスクをやって

    Deep U-Netで自動歌声分離 - Qiita
  • 初心者がchainerで線画着色してみた。わりとできた。

    デープラーニングはコモディティ化していてハンダ付けの方が付加価値高いといわれるピ-FNで主に工作担当のtai2anです。 NHKで全国放送されたAmazon Picking Challengeでガムテべったべたのハンドやロボコン感満載の滑り台とかを工作してました。 とはいえ、やっぱりちょっとディープラーニングしてみたいので1,2か月前からchainerを勉強し始めました。 せっかくなので線画の着色をしたいなーと思って色々試してみました。 線画の着色は教師あり学習なので線画と着色済みの画像のデータセットが(できれば大量に)必要です。 今回はOpenCVでカラーの画像から線画を適当に抽出しています。 抽出例 → カラーの画像を集めて線画を作ればデータセットの完成です。(今回は60万枚くらい使っています) ネットワークの形ですが、U-netという最初の方でコンボリューションする時の層の出

    初心者がchainerで線画着色してみた。わりとできた。
  • 1