タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

qiitaとmachine-learningとdeep-learningに関するstibbarのブックマーク (2)

  • Optimizer : 深層学習における勾配法について - Qiita

    はじめに 深層学習の勾配法には様々な手法が提唱されています。その中で、どの手法を用いるのが適切であるか自分でもあまり理解できていない部分があり、今回は勾配法の中でも実際に深層学習で主に用いられている手法(SGD, Momentum SGD, AdaGrad, RMSprop, AdaDelta, Adam)について、実装することを前提に調べてまとめてみました。実装フレームワークはChainerを想定しています。 SGD SGD(Stochastic Gradient Descent : 確率的勾配降下法)は、Optimizerの中でも初期に提唱された最も基的なアルゴリズムです。重み$\mathbf{w}$の更新は以下のように行っております。このとき、$E$は誤差関数、$\eta$は学習係数を表しています。

    Optimizer : 深層学習における勾配法について - Qiita
  • ゼロからDeepまで学ぶ強化学習 - Qiita

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? ロボットから自動運転車、はては囲碁・将棋といったゲームまで、昨今多くの「AI」が世間をにぎわせています。 その中のキーワードとして、「強化学習」というものがあります。そうした意味では、数ある機械学習の手法の中で最も注目されている(そして誇張されている・・・)手法ともいえるかもしれません。 今回はその強化学習という手法について、基礎から最近目覚ましい精度を出しているDeep Q-learning(いわゆるドキュン、DQNです)まで、その発展の流れと仕組みについて解説をしていきたいと思います。 記事の内容をベースに、ハンズオンイベントを開

    ゼロからDeepまで学ぶ強化学習 - Qiita
  • 1