ブックマーク / deepage.net (10)

  • Pythonでの数値計算ライブラリNumPy徹底入門

    NumPyは、多次元配列を扱う数値演算ライブラリです。機械学習だけでなく画像処理、音声処理などコンピュータサイエンスをするならNumPyを学んでおくことで、あなたの日々の研究や開発の基礎力は格段にアップするはずです。 プログラミングの初心者から、Webエンジニア、これから研究する人など、初学者にも分かりやすく優しく説明することを心がけて必要な知識が身につくように解説しています。 腰を据えて学習する時間と余裕のある方は、Step1から順に進めていくことで、苦手意識のあった方でも一通り読み終わる頃には理解できなかったPythonとNumPyのソースコードがスラスラと読めるようになるはずです。 上級者の方は、分からない記事だけ読むだけでも、力になると思われます。あなたのプログラミング能力を向上する手助けになることをお約束します。このサイトを通して、コンピュータサイエンスに入門しましょう。 Ste

    Pythonでの数値計算ライブラリNumPy徹底入門
  • これさえ読めばすぐに理解できる強化学習の導入と実践

    強化学習の位置づけ 教師あり学習 教師なし学習 強化学習 強化学習の応用事例 Atariの攻略 AlphaGo ロボットの自動動作獲得 ファイナンスへの応用 広告配信の最適化 OpenAI Gymを使ってQ-learningを実装してみる 状態 行動 報酬 実装 参考文献 ディープラーニングなどの機械学習技術の進歩によって、過去のデータから学習する技術は大きく進化し、写真の中に写っている対象を認識することや病気の診断、多言語間の翻訳をする性能を著しく向上させることができました。 すでにその性能は専門的な教育を受けた人間の能力と同等 [1] か超えている分野もあるほどです。 一方で、人間にはデータを与えなくとも自ら経験から学び、スキルを上達させることができます。特に何も教えられなくとも、経験からゲームを攻略することやロボットの正しい動作の仕方を学んでいくことができます。 機械学習の中でも、こ

    これさえ読めばすぐに理解できる強化学習の導入と実践
  • RNNでプログラミング言語の構文エラーを自動修復する衝撃

    コンパイルエラーの問題点 DeepFix Iterative Repair まとめ 参考文献 プログラミング言語のコンパイルエラーを自動で検知して修復することができたら、プログラマの作業時間を減らせる可能性があります。もしくは、テキストエディタがプログラムを書いている最中に、エラーだろうと思われる構文を見つけたときにさり気なく教えてくれたら生産性が著しく向上することも考えられます。 “Software is eating the world.“という言葉は、マーク・アンドリーセンの提唱した言葉です。まだまだ「い尽くす」ほどではないものの、徐々にその影響力は高まっていると感じます。ソフトウェアを開発する必要性が増すにつれて、ソフトウェアエンジニアも次第に求められていくことでしょう。そして、そのプログラマの仕事の大部分はデバッグに費やされます。 バグや構文エラーを自動検知するシステムがテキス

    RNNでプログラミング言語の構文エラーを自動修復する衝撃
  • RNN:時系列データを扱うRecurrent Neural Networksとは

    Recurrent Neural Networksとは何か RNNの応用事例 機械翻訳 音声認識 画像の概要生成 説明文からの画像生成 知っておくと便利なRNNの種類と進化 Simple RNN LSTM GRU Bi-directional RNN Attention RNN Quasi-Recurrent Neural Network TensorFlowによるRNNの実装 まとめ 参考文献 人間は、目の前で起きた出来事から、次に起こりそうな出来事を予測しながら文脈を読んで判断を下すことができます。例えば、車を運転している際に歩行者が飛び出しそうだと思えば、十分な間隔を置いて走行することが出来るでしょう。 また、現実世界は時間の制約を受ける事象はたくさんあります。アニメーションなどのストーリーでは、前回の文脈を前提として次の展開が進んでいきます。 Recurrent Neural Ne

    RNN:時系列データを扱うRecurrent Neural Networksとは
  • 高次元のデータを可視化するt-SNEの効果的な使い方

    t-SNEは、高次元のデータを可視化する手法としては、非常に便利ですが、時々不可解な挙動をしたり、誤解を招くような可視化をすることがあります。 シンプルなデータを可視化して動作の仕組みを理解することで、t-SNEのより効果的な使い方を学ぶことができます。 t-SNEは、高次元のデータを調査するための手法として、2008年にvan der MaatenとHintonによって発表 [1] された人気の手法です。 この技術は、数百または数千次元のデータですら無理やり2次元の「マップ」に落とし込むという、ほとんど魔法のような能力を備えているために、機械学習の分野で幅広く普及しています。 このような印象を持っている方が多いのですが、こういった捉え方をしていると誤解を招くこともあります。 この記事の目的は、よくある共通の誤解を解くためでもあります。 t-SNEで可視化できることと、できないことを説明す

    高次元のデータを可視化するt-SNEの効果的な使い方
  • Doc2Vecの仕組みとgensimを使った文書類似度算出チュートリアル

    類似したコンテンツのタイトルは、女性アーティストだらけとなっている。浜崎あゆみは日のレディー・ガガらしい。 Bag-of-wordsの欠点とDoc2Vecのメリット Bag-of-wordsは文書内の単語の出現回数をベクトルの要素とした分散表現だ。例えば、 { I, have, a, pen, I, have, an, apple } という単語区切りの文書があるとしよう。この文書をBag-of-wordsでベクトル化する。ベクトルの並び順をI, have, a, pen, an, appleとすると、 [2, 2, 1, 1, 1, 1] と表現することになる。単に出現頻度を計算しているだけなので、シンプルで計算効率よく分散表現を得ることが出来る。 では、Bag-of-wordsの何が問題なのだろうか?Bag-of-wordsでは、単語の出現順序が考慮されず、同様の単語が使われていれば

    Doc2Vecの仕組みとgensimを使った文書類似度算出チュートリアル
  • Residual Network(ResNet)の理解とチューニングのベストプラクティス

    Residual Network(ResNet)とは ResNetのアイデア Shortcut Connectionの導入 Bottleneckアーキテクチャ ResNetの最適化ベストプラクティス Optimizerの選定 Batch Normalizationの位置 Post Activation vs Pre Activation Wide Residual Network まとめ 参考 2015年のImageNetコンペティションとCOCOセグメンテーションの最良モデルとしてDeep Residual NetworksがMicrosoft Researchから提案され、最大1000層以上の深いニューラルネットワークを構築することが可能となった。 記事では、 Residual Networkとは何か Residual Networkのチューニング方法 Residual Networ

    Residual Network(ResNet)の理解とチューニングのベストプラクティス
  • 定番のConvolutional Neural Networkをゼロから理解する

    Convolutional Neural Networkとは何か CNNで解決できる問題 Convolutional Neural Networkの特徴 畳み込みとは 合成性 移動不変性 Convolutional Neural Networkの構成要素 ゼロパディング(zero padding) ストライド Fully Connected層 Fully Connected層の問題点 Convolution層 Pooling層 TensorFlowによる実装 TensorFlowのインストール CNNでMNIST文字認識する 参考 近年、コンピュータビジョンにおける最もイノベーションと言えるのはConvolutional Neural Networkといっても過言ではない。 コンピュータビジョンの業界におけるオリンピックとも言えるコンペティションがImageNetである。 そのコンペティシ

    定番のConvolutional Neural Networkをゼロから理解する
  • レコメンドに浸透していくDeep Learning: 大手サービスの実用例から最新アルゴリズムを概観する

    レコメンドに浸透していくDeep Learning: 大手サービスの実用例から最新アルゴリズムを概観する
  • Word2Vec:発明した本人も驚く単語ベクトルの驚異的な力

    Word2Vecとは Word2Vecで演算処理する Word2Vecとニューラルネットワーク Word2Vecの仕組み CBoW Skip-gram Word2Vecを応用することができる分野 レコメンド 機械翻訳 Q&A・チャットボット 感情分析 Word2Vecの弱点 Word2Vecの派生系や類似ツール GloVe WordNet Doc2Vec fastText まとめ 参考 世界中のWebサイトの数は2014年に10億件を超えたようだ。そして、Facebookのユーザー数だけでも16億人を超えている。 そして、そのいずれもコンテンツの中身の大部分はテキストから成り立っていることだろう。 ということは、莫大に増大し続けるネット上のデータのほとんどはどこかの国の言葉だってことだ。世界中の人が毎日テキストデータを生成し続けたことはこれまでの歴史上無かったんじゃないだろうか。 もしそん

    Word2Vec:発明した本人も驚く単語ベクトルの驚異的な力
  • 1