タグ

mathに関するcrafのブックマーク (35)

  • ラマヌジャンは本当に何も知らなかったのか

    $$\newcommand{a}[0]{\alpha} \newcommand{Aut}[0]{\operatorname{Aut}} \newcommand{b}[0]{\beta} \newcommand{C}[0]{\mathbb{C}} \newcommand{d}[0]{\delta} \newcommand{dis}[0]{\displaystyle} \newcommand{e}[0]{\varepsilon} \newcommand{F}[4]{{}_2F_1\left(\begin{matrix}#1,#2\\#3\end{matrix};#4\right)} \newcommand{farc}[2]{\frac{#1}{#2}} \newcommand{G}[0]{\Gamma} \newcommand{g}[0]{\gamma} \newcommand{Gal}[0]

    ラマヌジャンは本当に何も知らなかったのか
  • クォータニオンとは何ぞや?:基礎線形代数講座 - SEGA TECH Blog

    ---【追記:2025-02-01】--- 雑誌「数学セミナー」でおなじみ日評論社さんからのお声がけで「基礎線形代数講座」が書籍化されました。全体的に細かなブラッシュアップ、少しですが加筆もしています。やっぱちゃんとした紙のでじっくり読みたい!って方など、こちらもどうぞ。 www.nippyo.co.jp ---【追記:2022-04-01】--- 「基礎線形代数講座」のPDFファイルをこの記事から直接閲覧、ダウンロードできるようにしました。記事内後半の「公開先」に追記してあります。 --- 【追記ここまで】--- みなさん、はじめまして。技術部 開発技術部のYです。 ひさびさの技術ブログ記事ですが、タイトルからお察しの通り、今回は数学のお話です。 #数学かよ って思った方、ごめんなさい(苦笑) 数学の勉強会 弊社では昨年、有志による隔週での数学の勉強会を行いました。ご多分に漏れず、

    クォータニオンとは何ぞや?:基礎線形代数講座 - SEGA TECH Blog
    craf
    craf 2021/06/16
  • 線形代数とは?初心者にもわかりやすい解説 | HEADBOOST

    「線形代数を簡単に理解できるようになりたい…」。そう思ったことはないでしょうか。当ページはまさにそのような人のためのものです。ここでは線形代数の基礎のすべてを、誰でもすぐに、そして直感的に理解できるように、文章だけでなく、以下のような幾何学きかがく的なアニメーションを豊富に使って解説しています。ぜひご覧になってみてください(音は出ませんので安心してご覧ください)。 いかがでしょうか。これから線形代数の基礎概念のすべてを、このようなアニメーションとともに解説していきます。 線形代数の参考書の多くは、難しい数式がたくさん出てきて、見るだけで挫折してしまいそうになります。しかし線形代数は来とてもシンプルです。だからこそ、これだけ多くの分野で活用されています。そして、このシンプルな線形代数の概念の数々は、アニメーションで視覚的に確認することで、驚くほどすんなりと理解することができます。 実際のと

    線形代数とは?初心者にもわかりやすい解説 | HEADBOOST
    craf
    craf 2021/02/11
  • FF5のレベル5デスと整数論 - tsujimotterのノートブック

    Final Fantasy Ⅴ(以下、FF5)というゲームをご存知でしょうか? 私が小学生ぐらいの頃に流行したロールプレイングゲームです。当時、私はFFの魅力がわからずプレイしたことすらなかったのですが、大人になってからその面白さに気づき、はまっています。 今回は、FF5にまつわるちょっぴり整数論っぽい問題についてです。 背景 さて、そのFFの5作目のFF5ですが、面白いシステムが導入されました。それが 青魔法 です。青魔法を使う青魔導士は、敵が使ってくる魔法を受けると、「ラーニング」といって、その魔法を習得し、次回以降の戦闘で使用することができるのです。もちろん、敵の扱う魔法すべてをラーニングできるわけではないのですが、バラエティ豊かな魔法を手にいれることができ、青魔法を収集することもゲームの楽しみの一つでした。 参考: FF5 青魔法の効果と習得方法 その中でも、特に面白いなと思ったの

    FF5のレベル5デスと整数論 - tsujimotterのノートブック
    craf
    craf 2019/03/22
  • 科学史から最小二乗法 (回帰分析) を説明してみる - ill-identified diary

    2016/12/15: にわかに閲覧者が増えたのでおかしなところを微修正 概要 統計学史をちょっと調べていておもしろかったのでまとめてみた 技術的にはすごく初歩的な話なので, 回帰分析 (最小二乗法) の入門的な「読み物」という位置づけになりそう 入門的な読み物なので, 特に最小二乗法の説明箇所は中学高校の数学の知識だけで理解できるような表現をしている, したつもり. PDF換算で 10 ページ (ただし画像が結構多い) 惑星の軌道を予測する連立方程式で惑星の軌道を予測する19世紀初頭にフランスの数学者ルジャンドル*1が最小二乗法のアイディアを最初に発表したが, ドイツ数学者ガウス*2が直後に自分こそが先に思いついたと主張し, 論争を生んだという (Abdulle & Wanner, 2002, 200 Years of Least Squares Method). しかし, いずれが先

    科学史から最小二乗法 (回帰分析) を説明してみる - ill-identified diary
    craf
    craf 2019/02/21
  • サービス終了のお知らせ

    サービス終了のお知らせ いつもYahoo! JAPANのサービスをご利用いただき誠にありがとうございます。 お客様がアクセスされたサービスは日までにサービスを終了いたしました。 今後ともYahoo! JAPANのサービスをご愛顧くださいますよう、よろしくお願いいたします。

    craf
    craf 2018/03/16
  • 7×7×7以上のルービックキューブが必ず歪んでいる理由 - アジマティクス

    この記事は、日曜数学アドベントカレンダー7日目の記事です。記事のテーマも7だしいい感じ。偶然だけど。 ......。 ............。 えっルービックキューブ難しくない? みんな頭いいね? ほんとは6面揃ってる画像載せて「ルービックキューブ買ってきたよ〜よっしゃ〜解くぞ〜!」からの「えっ難しくない?」って流れにしたかったんだけど、一度崩してしまったが最後二度と6面揃った画像が手に入らなくなったので残念ながらボツになりました。悲しいね。 大きいルービックキューブ ときおり「巨大なルービックキューブ」が話題になることがあります。13×13×13とか。こんなやつです。 (画像はtriboxストアさんより引用。以下同じ) いかついですね。もう少し太刀打ちできそうな範囲では7×7×7とかもあります。 (引用元:http://store.tribox.com/products/detail.

    7×7×7以上のルービックキューブが必ず歪んでいる理由 - アジマティクス
    craf
    craf 2017/12/17
  • "独創的すぎる証明"「ABC予想」をその主張だけでも理解する - アジマティクス

    2017年12月16日、数学界に激震が走りました。……というと少し語弊があるでしょうか。 この日、あの「フェルマーの最終定理」に匹敵するとも言われる数学の重要な予想、つまり未解決問題であった「ABC予想」が京都大数理解析研究所の望月新一氏によってついに解決されたというニュースが、数学界を、いや、世界中を駆け巡ったのです。 science.srad.jp とは言っても実は、ABC予想を証明したとする論文は2012年にすでに発表されていて、そこから5年間ずっと「査読中」、つまりその証明が正しいかどうかの検証中だったのです(5年もかかったというのは、それだけこの証明が独創的で難解だったことの証左でもあります)。 端から見ていた所感として、論文が出た当初は、当にこれがABC予想の証明になっているのか疑う向きも多かったようですが、最近では、証明はほぼ間違いないのだろう、というような雰囲気だったよう

    "独創的すぎる証明"「ABC予想」をその主張だけでも理解する - アジマティクス
  • 話題の「ABC予想」に関する番組を公開|ニコニコインフォ

    「ABC予想」の証明に関する話題を受け、先日2017年10月7,8日に開催された「数学の祭典 MathPower2017」のイベント生放送の様子を公開いたしました。 同イベント内の加藤文元教授による講演「ABC予想と新しい数学」では「ABC予想」などの数論の最重要問題がいくつも解決すると言われる望月新一教授の「宇宙際タイヒミュラー(IUT)理論」について、一般の方にも理解できるように解説しています。 ※講演は7時間26分から なお、こちらの放送は、一般会員、プレミアム会員に関わらず、タイムシフト視聴期限無制限、タイムシフト視聴回数無制限でご覧いただけます。

  • 何もないところから数を作る

    The document discusses optimization techniques for deep learning frameworks on Intel CPUs and Fugaku aimed architectures. It introduces oneDNN, a performance library for deep learning operations on Intel CPUs. It discusses issues with C++ implementation, and how just-in-time assembly generation using Xbyak can address these issues by generating optimal code depending on parameters. It also introdu

    何もないところから数を作る
    craf
    craf 2017/07/25
  • やたらすごい素数 - INTEGERS

    この記事は非公開化されました。 integers.hatenablog.com 非公開前の内容要約: ある1089桁の素数の紹介。 この記事の内容は部分的に書籍『せいすうたん1』の第12話に収録されています。 integers.hatenablog.com

    やたらすごい素数 - INTEGERS
    craf
    craf 2017/06/05
  • ディープラーニングのための線形代数入門:一般的演算の初学者向けガイド | POSTD

    Jeremy Howardによる ディープラーニングの素晴らしいコース を受講している間、自分の前提知識がさびついてきているせいで、誤差逆伝播法のような概念が理解しにくくなっていることを認識しました。そこで、理解度を上げるべく、そうした概念に関するいくつかのWikiページをまとめてみることにしました。記事では、ディープラーニングでよく使われる線形代数演算のいくつかについて、ごく基的な事項をざっとご紹介します。 線形代数とは? ディープラーニングの文脈での線形代数とは、数の集合を同時に操作するための便利な手法を提供してくれる、数学的ツールボックスです。これらの数値を保持するためのベクトルや行列(スプレッドシート)のような構造体と、それらを加算、減算、乗算、および除算するための新しい規則を提供します。 線形代数が便利な理由 線形代数は、複雑な問題を単純で直感的に理解できる、計算効率の良い問

    ディープラーニングのための線形代数入門:一般的演算の初学者向けガイド | POSTD
    craf
    craf 2017/05/17
  • 確率的プログラミング | POSTD

    この数年で、プログラミング言語(PL)や機械学習のコミュニティは 確率的プログラミング(PP) を用いて、それぞれに共通する研究の関心事を明らかにしてきました。その概念は、抽象化のような強力なPLのコンセプトを”エクスポート”し、現状では複雑で困難な作業である統計的モデリングに再利用することができるかもしれない、というところにあります。 (講義ノートの 最新版 を閲覧したい方は、リンクをクリックしてください。ソースは GitHub に投稿してあります。誤りを発見した場合は、Pull Requestを送信してください。) 1. 何、そしてなぜ 1.1. 確率的プログラミングは○○○ではない 直観に反して、確率的プログラミングとは確率的に振る舞うソフトウェアを書くことでは ありません。 例えば、暗号のキー・ジェネレータやOSカーネルでの ASLR の実装、または回路設計のための 焼きなまし法

    確率的プログラミング | POSTD
  • 【ループ系昔話】 n地蔵(nは0を除く自然数) | オモコロ

    おおみそかの日のことでした。 村はずれにはお地蔵さまが6つ並んでおりました。 「お地蔵さま。雪が降って寒かろう。このかさをかぶってくだされ」 やさしいおじいさんは、売れなかった笠をお地蔵さまにかぶせてあげることにしました。 しかし笠は5つしかありません。 「ひとつ笠が足りない・・・」 そこで、おじいさんは初期値を変えることにしました。 (n=7) ・・・・・・笠はひとつも売れませんでした。 雪が強くなってきました お地蔵さまが7つ並んでおりました。 「お地蔵さま。雪が降って寒かろう。この笠をかぶってくだされ」 おじいさんは、売れなかった笠をお地蔵さまにかぶせてあげました。 しかし笠は6つしかありません。 「やはりひとつ笠が足りない・・・やりなおしか・・・」 やはり、おじいさんは初期値を変えることにしました (n=8) ・・・お地蔵さまが8つ並んでおりました。 しかし笠は7つしかありません。

    【ループ系昔話】 n地蔵(nは0を除く自然数) | オモコロ
    craf
    craf 2016/11/10
  • 数学的原理に裏打ちされたファンタジー小説──『精霊の箱: チューリングマシンをめぐる冒険』 - 基本読書

    精霊の箱 上: チューリングマシンをめぐる冒険 作者: 川添愛出版社/メーカー: 東京大学出版会発売日: 2016/10/26メディア: 単行この商品を含むブログ (4件) を見る精霊の箱 下: チューリングマシンをめぐる冒険 作者: 川添愛出版社/メーカー: 東京大学出版会発売日: 2016/10/26メディア: 単行この商品を含むブログ (4件) を見る書は副題にチューリングマシンをめぐる冒険とあるように、「チューリングマシン」について、その諸原理や応用問題を取り扱った一冊である。チューリングマシンとは計算を数学的にモデル化するために生み出されたもので──と説明を始めたらキリがないので一旦終わるが、それと同時に、書は「格ファンタジー」でもある。 ベストセラー『もし高校野球の女子マネージャーがドラッカーの『マネジメント』を読んだら』を筆頭として、ストーリー仕立てで現実の経営論や

    数学的原理に裏打ちされたファンタジー小説──『精霊の箱: チューリングマシンをめぐる冒険』 - 基本読書
    craf
    craf 2016/10/31
  • Webプログラマと数学の接点、その入り口

    フロントエンドのパラダイムを参考にバックエンド開発を再考する / TypeScript による GraphQL バックエンド開発

    Webプログラマと数学の接点、その入り口
    craf
    craf 2016/10/05
  • 「異世界からきた」論文を巡って: 望月新一による「ABC予想」の証明と、数学界の戦い

    craf
    craf 2016/07/07
  • 機械学習の基礎知識としての数学 - learning.ikeay.net

    私がAI人工知能)や機械学習って難しいナーと感じるところは、数学の前提知識がある程度必要なところです。 GoogleからTensorflowが出たときに、私もいっちょやってみるかなんて思ったのですが、参考にした記事もなかなか難しくてあんまり理解できなかったのを覚えてます。途中まで理解出来てたのに、急に数式が出てきて「なるほどわからん!」ってなることが多かったですね。 「というかエンジニアなのに数学苦手なのw」とビックリされる方もいらっしゃると思いますが、エンジニアっつったって、今の御時世理系出身エンジニアばかりじゃないんです。でもエンジニア女子やってると自動でリケジョ扱いされるから面白いですね。 当面の目標としては、AIの中でも機械学習を学んでいきたいので(DeepLearningできるようになりたい!)、あると嬉しい数学の知識としては以下です。 線形代数 確率・統計 微分・積分 AI

    機械学習の基礎知識としての数学 - learning.ikeay.net
    craf
    craf 2016/05/11
  • 人類最高傑作、微分積分はこうして生まれた ジョン・ネイピア物語は終わらない~ネイピア数e誕生物語 | JBpress (ジェイビープレス)

    ネイピア数eの威力 2.71828182845904523536028747135266249775724709369995・・・ 人類のイノベーションの中で最高傑作の1つが「微分積分」です。冒頭の数がその巨大な世界の礎となり、土台を支えています。この数は、ネイピア数eまたは自然対数の底と呼ばれる数学定数です。 湯飲み茶碗のお茶やお風呂の温度、薬の吸収、マルサスの人口論、ラジウム(放射性元素)の半減期、うわさの伝播、アルコールの吸収と事故危険率、人工肝臓器、水中で吸収される光量、そして肉まんの温度、これらすべてが次の数式によってうまく説明できます。

    人類最高傑作、微分積分はこうして生まれた ジョン・ネイピア物語は終わらない~ネイピア数e誕生物語 | JBpress (ジェイビープレス)
    craf
    craf 2016/04/21
  • https://rentwi.textfile.org/?717221352655175680

    craf
    craf 2016/04/06