タグ

ブックマーク / enakai00.hatenablog.com (2)

  • 数理最適化と機械学習を比較してみる - めもめも

    数理最適化 Advent Calendar 2022 の記事です。 何の話かと言うと Pythonではじめる数理最適化 ―ケーススタディでモデリングのスキルを身につけよう― 作者:岩永二郎,石原響太,西村直樹,田中一樹オーム社Amazon 上記の書籍の第7章では、次のような問題を取り扱っています。 細かい点は書籍に譲りますが、まず、生データとして次のようなデータが与えられます。 これは、あるショッピングサイトの利用履歴を集計して得られたもので、あるユーザーが同じ商品を閲覧した回数(freq)と、その商品を最後に閲覧したのが何日前か(rcen)の2つの値から、そのユーザーが次にサイトにやってきた時に、再度、その商品を閲覧する確率(prob)を実績ベースで計算したものです。実績ベースのデータなので、ガタガタしたグラフになっていますが、理論的には、 ・freq が大きいほど prob は大きくな

    数理最適化と機械学習を比較してみる - めもめも
  • 「TensorFlow Tutorialの数学的背景」シリーズの目次 - めもめも

    TensorFlowを使って、実際にコードを動かしながら、DeepLearningの仕組みを段階的に学んでいきましょう。 目次 ・No.1 TensorFlow Tutorialの数学的背景 − MNIST For ML Beginners(その1) 平面上の2種類のデータをロジスティック回帰で直線的に分類するという、機械学習の基礎を説明します。 ・No.2 TensorFlow Tutorialの数学的背景 − MNIST For ML Beginners(その2) 線形多項分類器とソフトマックス関数で、3種類以上のデータを分類する方法を説明します。 ・No.3 TensorFlow Tutorialの数学的背景 − TensorFlow Mechanics 101(その1) No.1で説明した問題に対して、もっとも単純なニューラルネットワークを適用して、複雑な境界を持つ分類を実現します

    「TensorFlow Tutorialの数学的背景」シリーズの目次 - めもめも
  • 1