エントリーの編集
エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
高校数学で理解・実装するニューラルネットワーク - Qiita
記事へのコメント0件
- 注目コメント
- 新着コメント
このエントリーにコメントしてみましょう。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
高校数学で理解・実装するニューラルネットワーク - Qiita
はじめに この記事は高校レベルの数学の概念を用いてニューラルネットワークの仕組みを理解・実装まで解... はじめに この記事は高校レベルの数学の概念を用いてニューラルネットワークの仕組みを理解・実装まで解説するものです。細かな理論の説明はせずにforwardとbackwardの計算がどのように行われているかのみを実際に実装しながら確かめていきます(勾配法などの学習や最適化周りの説明はありません)。 実装にはPython+Numpyを使います。基本的にnumpyはimportされているものとしてコードを書きます。この記事は直感的な理解に重きを置いているので理論や定理に関して見当違いな表現をする場合もありますがご了承ください。また、一般化をしてしまうと添え字がごちゃごちゃしてわからなくなる場合もあるので基本的に具体例で理解をしていきます。 説明に使う数学について ニューラルネットワークを理解・実装する上でベクトルの内積、行列積、幾つかの微分公式が必要になるので簡単に解説します。高校数学がしっかりと

