エントリーの編集

エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
記事へのコメント0件
- 注目コメント
- 新着コメント
このエントリーにコメントしてみましょう。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています

- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
導出原理 - Wikipedia
導出原理(どうしゅつげんり、英: resolution principle)とは、ジョン・アラン・ロビンソン(英語版)... 導出原理(どうしゅつげんり、英: resolution principle)とは、ジョン・アラン・ロビンソン(英語版)により1965年に提案された[1]原理または手法を言う。 導出原理を元とする導出の手法は、その後の定理自動証明に大きな影響を与え、またPrologなどの論理プログラミング言語の基礎となった。 述語論理式 P が恒真であるかを証明する一般的な手続きは存在しないが、1930年に発表されたエルブランの定理はエルブラン領域の要素を論理式に代入して命題論理のレベルに落としその充足不能性を調べることで、¬P が充足不能(恒偽)であれば有限のステップで証明できることを保証している。また、エルブランの論文には単一化アルゴリズムなど他の様々なものが含まれていた[2]。 1950年代以降、計算機上での定理証明の研究が活発になり、ギルモアのアルゴリズム(1960)やデービス・パトナムのアルゴリズ