エントリーの編集
エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
記事へのコメント1件
- 注目コメント
- 新着コメント
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
Winograd 畳み込みアルゴリズムをTVMで実装する その2 - Qiita
前回の記事では、Winograd アルゴリズムの概要、TVM によるアルゴリズムの定義、ナイーブな GPU 実装、... 前回の記事では、Winograd アルゴリズムの概要、TVM によるアルゴリズムの定義、ナイーブな GPU 実装、までを説明しました。今回は、ナイーブなスケジュールから出発して、ステップバイステップでスケジュールを改善していきます。最終的には、 TVM 本家の Direct Convolution よりも 2 倍近く速くなります。また、TVM には AMDGPU 向けのバックエンドもあるので、AMDGPU 用のカーネルを生成することもできます。NVIDIA GPU 向けに高速化したスケジュールが、 AMDGPU でも高速に動作することを最後に示します。 高速化 1. 入力変換、出力逆変換の改善 まずは、入力タイルの変換 $V$ の計算スケジュールを改善します。$V$ は、サイズ (4, 4, 全タイル数, チャネル数) で、入力タイル $d$ に変換行列 $B^T$ を左右からかけた変換



2018/11/10 リンク