タグ

algorithmとimageに関するfubar_fooのブックマーク (7)

  • ラベリング処理アルゴリズム 画像処理ソリューション

    メインページ > 画像処理 二値化画像処理された画像において、白の部分(または黒の部分)が連続した画素に同じ番号を割り振る処理を ラベリングと言います。 通常、同じ番号ごとの面積(画素数)や幅、高さなどの特徴量を求めて欠陥検査や分類処理などに用いられます。 ラベリングには、二値化された画像の縦、横方向に連続している部分を同じラベルにする4連結と、 縦、横、斜め方向に連続している部分を同じラベルにする8連結との2種類の処理があります。 (4近傍、8近傍という場合もあります。) 以下、8連結の場合において、ラベリング処理アルゴリズムを紹介します。 まず、画像全ての画素のラベル番号を0(ゼロ)で初期化しておき、ラベリングで番号を割り付けるための ラベリング番号のルックアップテーブルを用意しておきます。(テーブルの使い方の詳細は後ほど) そして、画像の左上からラスタスキャンを行い、画素の色が白の位

  • きれいなおねいさんのあつめかた:Bijostagramのはなし。 - TMBのおぼえがき

    Bijostagram(びじょすたぐらむ)というWebサービスを作ってみました。 Bijostagram - Cute Girls on Instagram きれいなおねいさんは、好きですか? Bijostagramとは? Bijostagramは、きれいなおねいさんの画像がたくさん眺められるサービスです(個人的に作りました)。一番の大きな特徴は、Instagramから自動的にきれいなおねいさんの画像を集めてくる、というところです。Bijostagramでは、集めてきたおねいさん画像をランダムに表示しています。 Instagramは写真版Twitterで、しかも撮影した画像をオサレな感じで加工できてツイートできるというサービス。2月末に公式のAPIが公開されたので、いじってみました。→インスタグラムのAPIについてはこちら Bijostagramは、画像抽出と画像配置のアルゴリズムをPer

    きれいなおねいさんのあつめかた:Bijostagramのはなし。 - TMBのおぼえがき
  • Scale-invariant feature transform - Wikipedia

    The scale-invariant feature transform (SIFT) is a computer vision algorithm to detect, describe, and match local features in images, invented by David Lowe in 1999.[1] Applications include object recognition, robotic mapping and navigation, image stitching, 3D modeling, gesture recognition, video tracking, individual identification of wildlife and match moving. SIFT keypoints of objects are first

    Scale-invariant feature transform - Wikipedia
  • Surf - Wikipedia

    "Surfing the Web", slang for exploring the World Wide Web surf (web browser), a lightweight web browser for Unix-like systems Surf (video game), a 2020 video game included with Microsoft Edge SURF, an acronym for "Speeded up robust features", a computer vision algorithm Counter-Strike surfing, a custom game-mode for various Source engine video games

  • Haar-like feature - Wikipedia

    Haar-like features are digital image features used in object recognition. They owe their name to their intuitive similarity with Haar wavelets and were used in the first real-time face detector.[1] Working with only image intensities (i.e., the RGB pixel values at each and every pixel of image) made the task of feature calculation computationally expensive. A publication by Papageorgiou et al.[2]

  • Histogram of oriented gradients - Wikipedia

    The histogram of oriented gradients (HOG) is a feature descriptor used in computer vision and image processing for the purpose of object detection. The technique counts occurrences of gradient orientation in localized portions of an image. This method is similar to that of edge orientation histograms, scale-invariant feature transform descriptors, and shape contexts, but differs in that it is comp

    Histogram of oriented gradients - Wikipedia
  • Web上の膨大な画像に基づく自動カラリゼーション - A Successful Failure

    2010年11月03日 Web上の膨大な画像に基づく自動カラリゼーション Tweet 以前『Web上の膨大な画像に基づく自動画像補完技術の威力』において、Web上の膨大な画像から欠損部分を自動的に補完する手法*1について紹介した(図1)。 図1:Scene Completion Using Millions of Photographs これは、Flickr等から大量にかき集めてきた画像から類似度の高い画像を自動的に抽出し、欠損部分にハメ込むことで違和感の無い補完画像を生成するアプローチであり、そのアイデアと、生成される補完画像のクオリティが話題になった。素材の量が質に変化する、まさにWeb時代に適したアプローチである。 エントリでは同様の手法を用いて、失われた色を取り戻すカラリゼーション(colorization)について紹介したい。カラリゼーションとはコンピュータを用いたモノクロ画像

  • 1