Dynamic Routing Between Capsules - Téléchargez le document au format PDF ou consultez-le gratuitement en ligne
5. 2012: Deep Learningブームの幕開け ● 化合物の活性予測コンペでDeep Learningベースの手法が勝利 ○ ドメイン知識を使わず、活性予測の素人が優勝 ● Youtubeの動画を元に、”猫に反応するニューロン”を獲得 ○ 画像からの特徴抽出の自動化…従来は人間のドメイン知識に基づいて設計 ○ 2000台のマシンで1週間かけて10億パラメータを学習 ○ 猫、人といった概念を教えずに(!)それらの概念を獲得 人の顔 (左)、猫の顔(右)によく反応するニューロンの可視化 Merck Competition Challenge http://blog.kaggle.com/2012/10/31/merck-competition-results-deep-nn-and-gpus-come-out-to-play/ “Building High-level Featur
移転しました。 https://chezo.uno/post/2016-05-29-sonomoderu-guo-xue-xi-siteruno-wei-xue-xi-nano-tokun-tutara/
このような対話を通じて、レストランの検索に必要な情報をユーザから取得し、レストラン検索を行います。 今回、レストラン検索にはHotPepperグルメサーチAPIを利用させていただきました。ありがとうございます。 システムアーキテクチャ 対話システムは複数のモジュールから構成されています。今回は、各モジュールは独立に動作させず、前段階のモジュールの処理が終わった段階で駆動されるようにしています。 最終的なシステムアーキテクチャは以下の図のようになりました。 今回のアーキテクチャに沿って処理の流れを説明すると以下のようになります。 ユーザがテキストを入力すると、入力したテキストは言語理解部に入力されます。 言語理解部では入力されたテキストを解析して、対話行為と呼ばれる抽象的な意味表現に変換します。 言語理解部から出力された対話行為は、対話管理部に入力されます。対話管理部では入力された対話行為を
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 巷ではDeep Learningとか急に盛り上がりだして、機械学習でもいっちょやってみるかー、と分厚くて黄色い表紙の本に手をだしたもののまったく手が出ず(数式で脳みそが詰む)、そうか僕には機械学習向いてなかったんだ、と白い目で空を見上げ始めたら、ちょっとこの記事を最後まで見るといいことが書いてあるかもしれません。 対象 勉強に時間が取れない社会人プログラマ そろそろ上司やらお客様から「機械学習使えばこんなの簡単なんちゃうん?」と言われそうな人 理系で数学はやってきたつもりだが、微分とか行列とか言われても困っちゃう人 この記事で行うこと
初めて執筆に参加した本、データサイエンティスト養成読本シリーズの機械学習入門編が技術評論社さんから出ます。共著です。9月10日発売です。 データサイエンティスト養成読本 機械学習入門編 (Software Design plus) 作者: 比戸将平,馬場雪乃,里洋平,戸嶋龍哉,得居誠也,福島真太朗,加藤公一,関喜史,阿部厳,熊崎宏樹出版社/メーカー: 技術評論社発売日: 2015/09/10メディア: 大型本この商品を含むブログを見る このブログを読んでいる人はすでに機械学習に詳しい人が多いと思いますが、周りでこれから機械学習使い始ようとしている方に薦めてもらえれば幸いです。特に、最初の一歩を踏み出せずにいる方に手にとって欲しいと願っています。 また、発売当日にはちょうど私も日本に戻っており、執筆者が何人か集まって出版社主催のトークイベント(?)をする可能性もあるので、興味がある方はご参加
PFIが深層学習専業の「Preferred Networks」を設立、NTTが出資しトヨタと共同研究も プリファードインフラストラクチャー(PFI)は2014年10月1日、ディープラーニング(深層学習)やIoT(Internet of Things)の専業会社であるPreferred Networksを設立したと発表した。Preferred NetworksはNTTと資本・業務提携をし、NTTが10月8日に2億円を出資する。Preferred Networksは同日、トヨタ自動車と自動運転車の実現に必要となる機械学習やディープラーニング技術に関する共同研究を行うとも発表している。 Preferred Networksは、脳の仕組みを模した「ディープ・ニューラル・ネットワーク」を使用する機械学習であるディープラーニング技術や、様々なIoTセンサーから集めた情報をネットワークのエッジで処理する
ビッグデータとかの機械学習隆盛の背景にある文脈や、その拠り所となるコンピュータの処理性能から考えても「モバイルデバイス向けOSと機械学習を紐付けて考えようとする」ことはそもそもあまり筋がよろしくない・・・とは思うのですが、やはり長くiOSだけにコミットしてきた身としては、新たに興味を持っている機械学習という分野と、勝手知ったるiOSという分野の交差点はないのかなと考えずにはいられないわけでして。。 そんなわけで、「iOS と機械学習」について雑多な切り口から調べてみました。 iOSで使える機械学習ライブラリ DeepBeliefSDK コンボリューショナルニューラルネットワークを用いた画像認識ライブラリ。iOSとかのモバイルデバイスで処理できるよう、高度に最適化してある、OpenCVと一緒に使うのも簡単、とのこと。 https://github.com/jetpacapp/DeepBeli
先週、 @sla さん主催のNIPS2013読み会で、word2vec論文(正確には続報)の紹介をしました。 ちょっと解説を書きます。 このところの深層学習ブームは自然言語処理にも来ていて、それらのウチの1つと言われています(が、全然deepっぽさはない)。 最初のモチベーションがどういうところにあったかというのは、ちょっと色々だと思いますが(おそらく最初は言語モデルにおける低頻度語の確率をウマイことモデル化・推定したかったんではないかな)、何はともあれ単語の意味的なあるいは統語的な振る舞いをベクトル表現で表すという研究が流行っております。 ベクトル表現というのは、1つの単語wに対して、その単語を「表現」するようなベクトル v(w) を作ります。 そんなこといわれても、作れば?ということなんですが、できたベクトルに対して何かしら「都合のいい」性質ができることが真の目標です。 「都合のいい」
こんにちは.Machine Learning Advent Calendar (MLAC) 2013の14日目を担当します,[twitter:@kisa12012]です.普段は博士学生として,各地を放浪しながら機械学習の研究をしてます.今回の記事はボストンで執筆しています.現地時間(EST)での締切は守ったのでセーフ…ですよね? 本日は機械学習の技術的な内容の話ではなく,筆者が実践している機械学習関連の情報収集方法について纏めます*1.大きく分けて,学会情報の管理・論文情報の収集・その他の三種について述べたいと思います.今回のトピックの多くは他の分野にも通用する話になっているかと思います.他の分野の方がどのように情報収集されているのかも気になるところです. 学会情報の管理 まずは学会情報の管理についてです.機械学習に関連するカンファレンスは(特に近年乱立気味で)非常に沢山あります.全てをチ
ニュースアプリSmartNews(https://www.smartnews.be/)の背景のアルゴリズムについてTokyoWebMining30th(http://tokyowebmining30.eventbrite.com/)で話させていただいた際の資料です。 •SmartNews iphone版: https://itunes.apple.com/jp/app/id579581125 •SmartNews Android版 https://play.google.com/store/apps/details?id=jp.gocro.smartnews.android •SmartNews開発者ブログ http://developer.smartnews.be/blog/Read less
毎日暑いですね。比戸です。 ちょうど今週シカゴで開かれていたSIGKDD2013でBest research paperに選ばれたEdo Liberty氏 (Yahoo! Haifa Labs)の”Simple and Deterministic Matrix Sketching”のアルゴリズムを実装して公開してみました。 元論文PDFは著者サイトから、私が書いたPythonコードはGithubからそれぞれ入手できます。 SIGKDD (ACM SIGKDD Conference on Knowledge Discovery and Data Mining)はACM主催で行われる、知識発見&データマイニングにおけるトップ会議です。最近は機械学習との境目が曖昧になってきましたが、査読時には理論的な新しさだけでなく、実データ(特に大規模データ)を使った実験での評価が必要とされるのが特徴です。
PFIセミナー2013年6月6日分です。Deep Learningの技術的基礎からBengioの怪しげな妄想まで。Read less
統計数理研究所 H24年度公開講座 「確率的トピックモデル」サポートページ 講師: 持橋大地 (統数研), 石黒勝彦 (NTTコミュニケーション科学基礎研究所) 講義スライド 持橋分 (2013/1/15) [PDF] (12MB) 石黒分 (2013/1/16) [PDF] ソフトウェア UM (Unigram Mixtures) um-0.1.tar.gz DM (Dirichlet Mixtures) dm-0.1.tar.gz, dm-0.2.tar.gz PLSI (Probabilistic Latent Semantic Indexing) plsi-0.03.tar.gz (外部サイト) LDA (Latent Dirichlet Allocation) lda-0.1.tar.gz 参考文献 「私のブックマーク: Latent Topic Model (潜在的トピックモデ
タイトルの論文はCommunication of the ACM, 2012のレビュー記事 ドラフトバージョンは下のリンクから読める。 http://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf 割と面白かったのでいくつか内容を紹介 概要 機械学習システムはデータから自動でタスク(スパムフィルタ、レコメンドなど)をどうやって実行するかを見出すことができます。 しかしながら機械学習システムを成功させるには教科書を読んだだけではなかなか見つけづらいお約束事とかがあって、思うようには行かないことが多い。 本文献では機械学習の研究者および実務に携わる人間が知っておくべきである事柄を12個に要約しています。 一般化が重要 機械学習のゴールは訓練データにはないデータに対しても一般化して推定ができるという点になります。単に訓練データのみ分類できればよ
18 Jul 2012 Here I list a handful of code patterns that I wish I was more aware of when I started my PhD. Each on its own may seem pointless, but collectively they go a long way towards making the typical research workflow more efficient. And an efficient workflow makes it just that little bit easier to ask the research questions that matter. My guess is that these patterns will not only be useful
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く