You can get soup in a can. You can get bread in a can (*). Now the long wait is over! You can finally get Lambda Calculus in a can. Project LambdaCan is an amusing exercise in absurdity. It implements a reducer (interpreter) for the Lambda Calculus, a formal system (programming language) developed by Alonzo Church in the 1930's to attack the deepest mathematical problem of the day. This was the En
このエントリの 親友へ。ブログを書こう。 - IT戦記 y がブログを始めたみたいなので、読んでみた。 で、最新のエントリを読んでみたら、 Y コンビネータというものについて書いてあったので、 Y Combinatorが凄すぎる! - yuji1982の日記 Y コンビネータって何ってところから、自分でもいろいろ考えてみた。 結局なんなのかさっぱり分からなかったんですが、自分が考えたことをまとめておく まず、フィボナッチ数を求める fib を定義する var fib = function(n){ return (n <= 2) ? 1 : (arguments.callee(n-1) + arguments.callee(n-2)); }; fib(10); おお! JS すげー!名前は n しか使ってねーよ! めでたし、めでたし。。。。じゃなくて! JS が素晴らし過ぎて話が終わってしま
(In the original version of this post, I tried using a javascript tool for generating MathML. It appears to not work very well; several browsers failed to render it correctly, and it doesn't work in an RSS feed. I've gone back and re-written everything in simple text format.) In computer science, especially in the field of programming languages, we tend to use one particular calculus a lot: the La
このページは、Combinatory Logic Tutorialの翻訳です。 http://homepages.nyu.edu/~cb125/Lambda/ski.html 基本的に超訳です。 訳の正しさは全く保証されません。 訳のおかしい部分は多数あります。 翻訳元サイトの許可を取ったりはしていません。 無認可です。 訳者による前書きと感想コンビネータ論理チュートリアル 訳者による前書きと感想 訳してみたものの、ちょっと、たったこれだけの説明では、はじめてコンビネータ論理を知った人が読んで充分に理解できるとは思えない。 どうも、この文書は、原文の上位ディレクトリにあるLambda tutorialを読んだ後に読むべきものっぽいようだ。 しかし、流石にこっちまで訳す気力は無い。 そういう訳で、これだけを読むよりは、Unlambdaのチュートリアルを読んだ方がずっと、コンビネータ論理を理解
「JavaScriptによるテンプレート・モナド、すっげー簡単!」にて: 紙と鉛筆でラムダ計算を実行できることは必要だな、やっぱり。 なんて強調したので、ラムダ計算の入門、いってみよう。 [追記]練習問題集を追加しました。説明を読みながら、あるいは読んだ後で是非やってみてください。→「JavaScriptで学ぶ・プログラマのためのラムダ計算 問題集」[/追記] ※印刷のときはサイドバーが消えます。 内容: JavaScriptの関数リテラル ラムダ式ってなんだ ラムダ計算の体系と適用操作 ラムダ式の例をいくつか β変換 -- ラムダ計算のキモ! β変換を何度か実行してみる 中間まとめ、まだ続きがあるよ JavaScriptの関数リテラル 最初に、JavaScriptに関する知識を確認しておきましょう。なお、JavaScriptの対話的実行環境については「もっともお手軽な対話的JavaScr
仙台ロジック倶楽部 ラムダ計算ABC 数学セミナー92年8月号より A. ラムダ計算とは 今から60年程前、プリンストン大学の若手論理学者A.チャーチが、関数の新しい表記法を提案しました。ラムダ記法と呼ばれるその表記法では、例えば二乗を計算する関数は λx.x^2 と表します。従来の"f(x)"という書き方は、それが関数を表すのか、関数のxにおける値を表すのかが曖昧なので、ラムダ記法では、関数fのxにおける値をfxで示し、xにおける値がf(x)となる関数fをλx.f(x)と表すのです。 "f(x)"という表記法の欠陥は、高校の数学までではほとんど表面化しませんが、大学に入ってから定義域や値域が関数の集合になるような高階関数(オペレータとか作用素とも呼びます)を扱いだすとすぐわかります。作用素などというとひどく特殊なもののようですが、関数f(x)にその導関数f'(x)を対応させる微分演算子D
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く