MLメタデータによる優れたMLエンジニアリング コレクションでコンテンツを整理 必要に応じて、コンテンツの保存と分類を行います。 ペンギンを分類するために本番MLパイプラインを設定するシナリオを想定します。パイプラインはトレーニングデータを取り込み、モデルをトレーニングして評価し、それを本番環境にプッシュします。 ただし、後でさまざまな種類のペンギンを含むより大きなデータセットでこのモデルを使用しようとすると、モデルが期待どおりに動作せず、種の分類が正しく開始されないことがわかります。 この時点で、あなたは知ることに興味があります: 利用可能なアーティファクトが本番環境のモデルのみである場合、モデルをデバッグするための最も効率的な方法は何ですか?モデルのトレーニングに使用されたトレーニングデータセットはどれですか?この誤ったモデルにつながったトレーニングの実行はどれですか?モデルの評価結果
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く