タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

performanceとpythonとtipsに関するmanboubirdのブックマーク (2)

  • 開発者がビッグデータ分析にPythonを使う時によくやる間違い | POSTD

    システムの構築、新しい技術の習得、PythonやDevOpsなどに情熱を注ぐソフトウェア開発者です。現在はチューリッヒを拠点とするビッグデータのスタートアップで働いており、データ分析およびデータ管理ソリューションのためのPython技術を磨いています。 1 はじめに Python は開発時間を短縮できるという点で一般的に評価の高い言語です。しかし、Pythonを使って効率よくデータ分析をするには、思わぬ落とし穴があります。動的かつオープンソースのシステムであるという特徴は、初めは開発を容易にしてくれますが、大規模システムの破綻の原因になり得ます。ライブラリが複雑で実行時間が遅く、データの完全性を考慮した設計になっていないので、開発時間の短縮どころか、すぐに時間を使い果たしてしまう可能性があるのです。 この記事ではPythonやビッグデータで作業をする時に、最も時間を無駄にしがちな事柄につ

    開発者がビッグデータ分析にPythonを使う時によくやる間違い | POSTD
  • Pythonのfor文は遅い? - atsuoishimoto's diary

    bicycle1885.hatenablog.com こちらの記事を拝見していて、ちょっと気になったので注釈。 PythonやRを使っている人で、ある程度重い計算をする人達には半ば常識になっていることとして、いわゆる「for文を使ってはいけない。ベクトル化*1しろ。」という助言があります。 これは、PythonやRのようなインタープリター方式の処理系をもつ言語では、極めてfor文が遅いため、C言語やFortranで実装されたベクトル化計算を使うほうが速いという意味です。 昔からよくこういう言い方がよくされるが、当にPythonのfor文は遅いのだろうか。 聞くところによるとRのfor文はガチで遅いそうだが、Pythonの計算が遅いのはインタープリタ方式だからでも、for文が遅いからでもない。もちろん、Pythonはインタープリタなので遅いし、for文だって極めて遅い。しかし、これはPyt

    Pythonのfor文は遅い? - atsuoishimoto's diary
  • 1