Visually probe the behavior of trained machine learning models, with minimal coding. A key challenge in developing and deploying responsible Machine Learning (ML) systems is understanding their performance across a wide range of inputs. Using WIT, you can test performance in hypothetical situations, analyze the importance of different data features, and visualize model behavior across multiple mod
Entity Embeddingsという深層学習の手法があります。深層学習がよく使われる画像分析や音声分析などのデータとは違う、カテゴリ変数や順序変数の特徴量を学習する時に使います。 Entity Embeddingsが広く知られるようになったきっかけは、KaggleのRossmann Store Salesコンペでした。1位と2位のチームがドメイン知識をフル活用したアプローチをしたのに対し、この手法を活用したチームはドメイン知識の無い中なんと3位に入賞しました。コンペの説明と、使われた手法については、3位のNeokami Incのインタビュー記事、使われたソースコード、コンペ後に発表した手法に関する論文などで学ぶことができます。 タイタニック号生存者予測コンペのサンプルデータに対し、このEntity Embeddingsを実装するにはどうすれば良いのでしょうか。 0. 環境構築 環境構築
連載目次 ※本稿には新バージョンがあります。2021年に向けてのアップデート記事(2020年12月16日公開)はこちらです。 本稿は、ディープラーニング(深層学習)に関心があるビジネスマンから、これから始めてみたいというエンジニア、既に取り組んでいる実務経験者まで、幅広い人に向けて書いた。よって、初歩的な内容も含めつつ説明していくのでご了承いただきたい。 ディープラーニングを実装する場合、フルスクラッチでゼロからコードを書くのは非効率なため、専用のライブラリ/フレームワークが用いられるのが一般的だ。ディープラーニングが流行してから直近4年ほどの間に、次々と新しいフレームワークが登場した。現在、主要なものを挙げると、 TensorFlow: 2015年登場、Google製。一番有名で、特に産業界で人気 PyTorch: 2016年登場、Facebook製。この中では新興だが、特に研究分野で人
直感的かつ短いコードでアイデアを形にできるKerasはTensorFlowのラッパーとして大人気のライブラリです。本書でもTensorFlowをバックエンドとして使用し、自然言語処理、画像識別、画像生成、音声合成、テキスト生成、強化学習、AIゲームプレイなどさまざまなモデルをPythonとKerasで実装します。対象読者は、各種のディープラーニングを素早く実装したいプログラマー、データサイエンティスト。ディープラーニングを支える技術の速習にも好適です。数式はなるべく使わずにコードと図で説明します。ニューラルネットワークおよびPython 3の基本を理解している人であれば誰でも始めることができます。 目次 訳者まえがき まえがき 1章 ニューラルネットワークの基礎 1.1 パーセプトロン 1.1.1 最初のKerasのコードの例 1.2 多層パーセプトロン:最初のネットワークの例 1.2.1
プログラム問題としてあまりにも有名になってしまったので、今ではあらゆる言語のFizzBuzzがそろっています。面白いですね。 深層学習 で FizzBuzz この記事の読まれている大半の方は、FizzBuzzを書くのにあまり苦労しないでしょう。 しかし、あなたが何かの拍子でプログラムの書き方を忘れてしまったらどうでしょう? 心配する必要はありません。そういうときこそAIの出番です。 最近は空前の人工知能ブームで、猫も杓子もDeep Learningです。 実際、Deep LearningによるFizzBuzzは、いくつも先例があります。 Fizz Buzz in Tensorflow TensorFlowコトハジメ Fizz-Buzz問題 Kerasでfizzbuzz問題を解いてみる 実装方法にはバリエーションがありますが、基本的には 入力は直前の数値 or 文字列 出力は「数値」「Fiz
Amazon Web Services ブログ AWS Lambda および Tensorflow を使用してディープラーニングモデルをデプロイする方法 ディープラーニングは、実際のデータを処理する方法に革命をもたらしました。ディープラーニングアプリケーションの種類は、ユーザーの写真アーカイブの整理から、本のレコメンド機能、不正な動作の検出、自動運転車周辺の認識まで、多岐にわたります。 この投稿では、AWS Lambda で独自にトレーニングしたモデルを使用して、単純なサーバーレスのコンピューティング手法を大規模に活用する方法を段階的にご説明します。このプロセスの中で、サーバーレスを使って推論を実行するために使用できる AWS の主要なサービスをいくつかご紹介します。 ここでは、イメージ分類について取り上げます。パフォーマンスが高いオープンソースモデルを多数利用できます。イメージ分類では、
2000年代にニューラルネットワークの研究が再び活発になりました。現在、ディープラーニングは近代的な機械学習の道を切り開いている非常に活発な研究領域となっています。Google、Microsoft、Facebookなどの企業では、社内のディープラーニングチームが急成長しています。しかし、多くの人にとってディープラーニングはまだまだとても複雑で困難な課題です。本書ではサンプルのPython 3プログラムと簡潔な説明を通してこの複雑な分野の主要な概念を紹介します。微積分、行列演算、Pythonの基礎があれば誰でも本書を始めることができます。 監訳者まえがき まえがき 1章 ニューラルネットワーク 1.1 知的な機械を作るということ 1.2 従来のプログラムの限界 1.3 機械学習のしくみ 1.4 ニューロン 1.5 線形パーセプトロンをニューロンとして表現する 1.6 フィードフォワードニュー
はじめに TensorFlow はなかなかとっつきにくい部分があるかと思います。書き方が独特なので、慣れるまでに時間がかかるかと思います。公式の MNIST は一通りやったけど、自分で考えたディープニューラルネットワーク (DNN) をどう書いたらいいかわからない……なんてこともあるのではないでしょうか。 この記事では、シンプルな問題を題材にして、 TensorFlow をコピペに頼らず、自分の書きたい DNN を 低レベル API を使ってどのように書くかを最小構成で説明していきます(今さら感はありますが。。)。ベースは公式ドキュメントの Low Level APIs のあたり です。 内容としては: TensorFlow の最小構成要素 TensorFlow で線形関数のフィッティング TensorFlow で DNN を実装 のようになっています。また、以下のような方を対象としており
目次 イントロ ← 今ココ Scikit-learn・Keras モデルの性能指標・評価方法 データの前処理・データ拡張 早期終了(early stopping) 転移学習 ハイパーパラメータのチューニング モデル圧縮 応用 はじめに 大学3年生のとき、小林雅一『AIの衝撃 人工知能は人類の敵か』という本をなんのきなし読んだことがあります。その本の中で「最先端のAIを実装できるのは世界でも50人くらいの研究者・大学院生くらいだ」といった文章を読み、なんだかすごそうという動機で機械学習に触れ始めました。そのころちょうど、TensorFlow 0.0.5が公開されて騒がれていたことを覚えていますが、当時ディープラーニングとは何かすらまったく分かりませんでした。それから約2年の月日が経ちますが、TensorFlowをはじめとしたフレームワークの普及もあってか「最先端のAI」というものを研究し実装
Unity上でTensorFlowのCNNを動かす。 この記事でTensorFLowSharpは導入済みであると仮定している. ここを記事を見て、手持ちの環境に合わせてTensorFlowSharpをビルドしておく。 unityの導入 文法的にC#6でないと動かないと所があるので、ここからから最新版(Unity 2017.1以上)を落としておく。 https://store.unity.com/download?ref=personal プロジェクトの作成及び準備 プロジェクトを作成後は、Assetsの下にDllsというフォルダを作り、TensorFlowSharp\TensorFlowSharp\bin\Debug の下のTensorFlowSharp.dllとSystem.ValueTuple.dllをコピーしておく。 Scripting Runtime VersionをExperie
Benchmarking CNTK on Keras: is it Better at Deep Learning than TensorFlow? June 12, 2017 - Keras is a high-level open-source framework for deep learning, maintained by François Chollet, that abstracts the massive amounts of configuration and matrix algebra needed to build production-quality deep learning models. The Keras API abstracts a lower-level deep learning framework like Theano or Google’s
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く