タグ

設計と電源に関するotori334のブックマーク (50)

  • https://recom-power.com/ja/support/resource-library/book-of-knowledge/book-of-knowledge.html

    otori334
    otori334 2022/01/21
    “The AC/DC and DC/DC Books Of Knowledge”
  • DC-DCコンバーターの突入電流と負荷の制限

    電圧降下と停電 配電システムでは、突然の負荷増大は著しい電圧降下を発生させる可能性があります。これら短時間の電圧低下については、その後に続く電源の部品に影響を与えないようにすることが理想です。DC-DCコンバーターを入力電圧低下や停電から保護するための一般的な方法は、コンデンサー内に十分なエネルギーを保存して、電圧低下や停電の期間中もコンバーターが動作を継続できるようにすることです。図1に簡単な回路を示します。 回路は、カップリングダイオードDと、1つまたは複数のコンデンサーCで構成されます。コンデンサーCは、通常動作中に動作電圧VIN-VDiodeに充電されます。入力電圧の低下や停電が発生すると、ダイオードが逆電流をブロックしてコンデンサーの電荷が電源方向に放電されるのを防ぐので、DC-DCコンバーターはコンデンサーCに保存された全てのエネルギーを使用できます。コンデンサーの電荷はDC-

    DC-DCコンバーターの突入電流と負荷の制限
  • セルフバイアス回路の考え方

  • ハイサイドスイッチについて解説【仕組みや回路、使い方】

    ハイサイドスイッチとは、電源と負荷の間に入れるスイッチ素子(MOSFET)のことです。 電源のオン/オフや、負荷への電流供給/切断を制御する役割を持ちます。 逆に、ローサイドスイッチは負荷とGNDの間に挿入するスイッチ素子です。 ハイサイドスイッチ回路 ハイサイドスイッチは、基的にはPch MOSFETを使って構成します。 Nchの場合、ゲートに入力電圧(VIN)+ゲートしきい値電圧(VTH)を印加する必要があり、入力電圧より高い電圧が必要になりますが、Pchをオンさせる場合はVINーVTHと、入力電圧より低い電圧で済むためです。 ※後述しますが、昇圧回路を使ってゲート電圧をVIN以上に持ち上げることでNch MOSFETを使うことができるハイサイドスイッチICもあります。 下記のような使用条件の場合、ハイサイドスイッチを駆動するためのコントローラIC(ドライバIC)が必要になる場合があ

    ハイサイドスイッチについて解説【仕組みや回路、使い方】
  • フラバックコンバータの動作原理と回路設計の手順を解説

    が主な構成部品となります。 スイッチング制御ICにはスイッチングFETが内蔵されています。 シャントレギュレータで基準電圧を決めて出力電圧と比較し、フォトカプラで1次側のスイッチング制御ICへフィードバックを行います。 スイッチングFETがオンするとトランスの一次側にエネルギーを溜め、オフ時に2次側へエネルギーを伝送します。 入出力電圧に応じてスイッチングのオン期間をICが制御し、目標の電圧になるように制御されます。 下図が動作波形です。 一次側スイッチング波形はスイッチングFETのドレイン電圧をモニタしたものです。 二次側スイッチング波形はショットキーダイオードのアノード側の電圧です。 次に、フライバックコンバータの制御メカニズムを、フライバックICの内部回路を交えて解説していきます。 フライバックICの内部回路と制御メカニズム 一般的な電流モード制御のフライバックコンバータの回路を下図

    フラバックコンバータの動作原理と回路設計の手順を解説
  • Photocoupler Application Notes

    otori334
    otori334 2021/12/28
    リレー用MOSFET駆動用フォトボルカプラの基本特性と応用設計
  • サーミスタを使わずに低損失で突入電流を制限

    NTCサーミスタによる突入電流を制限する方法に代わる手法を紹介する。電源ラインに挿入した抵抗を切り替え制御することにより、突入電流を制限するというものだ。 負荷に200W以上もの電力を供給する電源回路には、突入電流を制限する機能が必要となる。この機能がない場合、突入電流は数百アンペアにも達し、入力ラインの整流器の故障、ヒューズや入力フィルタ用インダクタの溶断、あるいは力率改善(PFC:power factor correction)フィルタ用のコンデンサの破損などを引き起こす。 突入電流の制限方法としては、NTCサーミスタ(負の温度係数を持つサーミスタ)を入力ラインに挿入するという簡単な方法がある。この種のサーミスタは温度が下がると抵抗値が大きくなり、温度が上がると抵抗値が小さくなる。電源の投入時には高抵抗なので突入電流が制限され、しばらく時間がたつと、電流によって温度が上昇して抵抗値が下

    サーミスタを使わずに低損失で突入電流を制限
  • 【サイリスタ】ゲート回路の設計方法について!抵抗値の求め方など

    ゲート回路を構成する素子 上図にサイリスタのゲート回路を示します。ゲート回路はゲート直列ダイオード\(D_{GS}\)、ゲート並列ダイオード\(D_{GP}\)、ゲート直列抵抗\(R_{GS}\)、ゲート並列抵抗\(R_{GP}\)、ゲート並列コンデンサ\(C_{GP}\)で構成されています。 各素子の役割は以下のようになっています。 ゲート直列ダイオード\(D_{GS}\)流れる電流の方向を確定させるために接続します。ON/OFFの速度が早いため、ファストリカバリーダイオードを用います。 ゲート並列ダイオード\(D_{GP}\)ゲートに逆電圧がかかるのを防止するダイオードです。このダイオードにもファストリカバリーダイオードを用います。 ゲート直列抵抗\(R_{GS}\)ゲート電流を制限する抵抗です。この抵抗の設計方法(素子値と定格電力)については、この記事の後半で説明します。 ゲート並列

    otori334
    otori334 2021/12/27
    設計手順2が二つある.最初の設計手順2から値がおかしい.サイリスタではなくトライアックの話になっている.
  • Microsoft Word - サイリスタ設計

    otori334
    otori334 2021/12/27
    サイリスタのゲート回路設計
  • パワーMOS FETで逆接続による回路焼損防止回路: エアーバリアブル ブログ

    ハンドル:エアーバリアブル 電子工作、パソコン、旅行など自分の趣味の日記です。 たまにニュースや面白い動画の紹介も行っております。 有効な情報はホームページで取り扱っておりますので是非ご覧ください。 気が向いたらコメントします。 【警告】 ブログ内容で製作・改造・分解記事について、研究や学術の目的のために公開しているものです。十分な電気工作の知識を学習の上、全て自己責任で行ってください。 【注意】 コメント投稿された場合、書き込まれたかをご確認下さい。一時的なスパム対策でURLが含まれているコメントが投稿できない場合があります。その場合はttp:// などのh抜きでお願いします。 その他、サイトポリシーをご覧下さい。

  • DC-DCコンバーターの効率の計算

    DC-DCコンバーターの効率の計算:DC-DCコンバーター活用講座(17) データシートの理解(3)(2/4 ページ) 入力電流 入力電圧は2つの成分から構成されています。1つはDC成分(標準入力電流)で、もう1つはAC成分(バックリップル電流)です。 入力電流のDC成分は、さらに、負荷による入力電流とバイアス電流という2つの成分から構成されています。バイアス電流は負荷を取り外すだけで調べることができます。バイアス電流は、一般的に、無負荷時静止電流(IQ)またはハウスキーピング電流とも呼ばれます。この電流の発生原因は、出力電流が流れていないにもかかわらず、さまざまなスイッチング損失や寄生損失のためにコンバーターが発振して電力を消費し続けることと、内部電圧レギュレーターや電圧レファレンス回路が動作し続けることです。バイアス電流は入力電圧と周囲温度に依存するため、IQは通常、VIN,NOM、室

    DC-DCコンバーターの効率の計算
    otori334
    otori334 2021/12/26
    “1秒というのは、内部部品がオーバーヒートして燃えるのにかかる標準的な時間です”
  • 『突入電流(Inrush current)の対策:TDK(PTCサーミスタとNTCサーミスタ)』

    大好きのブログ 2019年06以前の記事にはリンク切れ(Yahooブログ)が大量にあります。 自作DAC,自作アンプの初心者です。電気は独学・素人、故に、 技術的内容は信用されないようにご注意下さい!! 突入電流対策のメモです。 一般に自作ユーザーとしては、電源投入時に抵抗で受けておいて 一定時間経ってからこの抵抗をリレーでバイパスする方法を採る事があります。 私もそうでしたが一つ不安がありました。 理屈上、リレーが故障した場合は、その抵抗が発熱するはずなのですね。 記憶が曖昧ですがその程度を知るためにリレーをONさせないでおきましたが、 音楽を普通に聴く程度では抵抗の発熱は素手で触れる程度で 問題なかったような記憶があります。※LM3886アンプにて しかしA級アンプではそうもいかないでしょう。 図:取り付け金具付きの便利なセメント抵抗 リレーが壊れないで正常に動作しておれば、 抵抗に

    『突入電流(Inrush current)の対策:TDK(PTCサーミスタとNTCサーミスタ)』
  • スイッチング・レギュレータの出力に現れる突入電流を低減し、起動時の問題を回避する | Analog Devices

    いずれのトポロジにおいても、インダクタのピーク電流は IOUT に比例します。出力電流の観点からは、最大負荷の状態を想定して出力コンデンサの値を決定する必要があります。 ここでアプリケーションにおける入力電圧範囲について考えてみます。入力電圧について、降圧型とそれ以外の2 つのトポロジには、インダクタの電流の DC 成分と AC成分の大きさという点で違いがあります。図 11 は、このことをわかりやすく示したものです。降圧型の場合、入力電圧が高くなるにつれて、AC 成分が大きくなります。平均電流は出力電流に等しいので、DC 成分は一定になります。したがって、インダクタのピーク電流は、入力電圧が最大の時に最大になります。 図 11. インダクタの電流と入力電圧の関係 昇圧型または反転昇降圧型の場合、入力電圧が高くなるにつれて、AC 成分が大きくなります。一方、表 1 に示したように、デューティ

  • 絶縁とノイズ対策|幅広い知識が必要で技術難度が高い|WTI

    みなさんこんにちは。第一技術部の赤谷です。 電気回路では、感電などの安全上の理由や予期せぬ電流破壊を避けるため、回路を絶縁する場合があります。 私たちがよく取り扱うものとしては、LANなどの通信インターフェースや絶縁電源などがあります。絶縁部の信号や電力の伝搬にはフォトカプラやトランスを用いることが一般的です。 このような絶縁回路ですが、ノイズ対策には注意が必要です。何のケアもしない場合、問題になることが多々あります。 その理由について説明します。 デジタル回路の動作クロックや電源のスイッチングに起因する高調波ノイズを抑制するにはできるだけ安定したグランドが必要です。しかし、絶縁によって導体を分離するということは、これとは逆の処置となりノイズ面では不利になります。 そこで絶縁の要件についてあらためて整理してみると以下のようになります。 ✓ 導体を分離する。 ✓ 直流電圧をかけても電流が流れ

  • ノイズ防止トランスとは(ノイズ対策トランス・障害波遮断変圧器)|EMC製品編|EMC入門講座|CEND

    1. ノイズ防止トランスとは何かを述べる前に 電源ラインを伝搬する高周波ノイズによって引き起こされる障害は、ときとして深刻な結果を招くことがある。例えば、半導体のような高付加価値製品を生み出す生産設備では、1回の異常停止により数千万円の損失を被ることもある。また、鉄道・航空・自動車・ロボット等の大きな力やエネルギーを扱う機器の誤動作は、金銭的な損失だけでなく人身事故にまで波及する場合もある。電源ラインのノイズ対策は、こうした事態を未然に防ぐために不可欠である。 稿では、このようなノイズ障害を防止するために開発されたノイズ防止トランス(ノイズ対策トランス/障害波遮断変圧器)について、使用方法と留意すべき点を紹介する。 2. ノイズ防止トランスとは(ノイズ対策トランス/障害波遮断変圧器) ノイズ防止トランスとはノイズ防止素子の一つで、図1のようにノイズ発生源の電源ラインまたは図2のようにノイ

  • DC-DCアプリケーションの考え方(1)極性の反転やパワーダブラー

    DC-DC変換を必要とするアプリケーションは多数あります。その数は非常に多く、世界での市場規模は2020年までに350億米ドルを超える見込みです。しかし、多くの回路設計者にとってDC-DCコンバーターは、インダクターやトランジスタなどの素子のように、1つの機能を果たす「ブラックボックス」と言えます。 DC-DCコンバーターは汎用の機能ブロックとして、必要とされるあらゆる場所に使用可能で、「代表的な」アプリケーション分野はありません。この最終章では、DC-DCコンバーターのアプリケーション分野がいかに広いかを示すために、DC-DCコンバーターのあまり一般的でないいくつかの使用方法について検討します。 極性の反転 絶縁型DC-DCコンバーターはフローティング出力を備えています。同様にフローティング入力を備えていると考えることもできます。従って、どんな絶縁型DC-DCコンバーターでも、電源電圧の

    DC-DCアプリケーションの考え方(1)極性の反転やパワーダブラー
    otori334
    otori334 2021/12/23
    “どんな絶縁型DC-DCコンバーターでも、電源電圧の極性を反転することができます”
  • コンデンサ・マイク用電源回路 | CQ出版社 オンライン・サポート・サイト CQ connect

    コンデンサ・マイクを使用するためには,比較的高い電圧の電源が必要です.図1は,コンデンサ・マイクに使用する48V電源の,簡略化した回路図です.12Vの電源から昇圧回路を使用して必要な電圧(ここでは48V)を発生させます.図1の回路で,黄色い部分の回路の役割の説明として,もっとも適切なのは,(a)~(d)のどれでしょうか.

    otori334
    otori334 2021/12/23
    “R1の電流は,出力電流の1/βの電流になります”
  • LC フィルタを追加し、スイッチング・レギュレータのノイズを削減する | アナログ・デバイセズ

    otori334
    otori334 2021/12/15
    “出力側よりも入力側にフィルタを追加した方がノイズの削減効果が高くなるというのは、降圧トポロジーに特有の現象です”
  • マイクアンプ 回路の検討3 ファンタム電源供給の抵抗値は?

    2014/09/26 Fantom 電源の供給方法注意の記事 ファンタム電源の回路を考えてみます。 初段部のみ再掲します。 図中の V+ or OFF と書かれたところに V+ を接続してコンデンサーマイクに電源を送ります。 このマイクアンプの入力インピーダンスは600Ωにしたいことと、 初段のカップリングコンデンサーを出来るだけ小さくしたいことから、 R1,R2を300Ωにしました。 もしこの時、入力回路の片側とグランド(シールド)線がショートするとどうなるのでしょう。 これは、あり得る事故です。(普通に不平衡入力を接続した時など) ただし、入力回路同士が短絡した時は直流的には問題ありません。 この種のオペアンプは+-15V 迄使用できますので、 将来、電源を電池から定電圧電源に変更した場合の30V で計算を進めてみます。 300Ω時の短絡電流は 100mA その時の抵抗の消費電力は 3

    マイクアンプ 回路の検討3 ファンタム電源供給の抵抗値は?
  • 電源装置 出力電圧 定格負荷電圧 無負荷電圧 電圧変動率 内部抵抗 電圧降下 - 1アマの無線工学 H17年12月期 A-18