並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 40 件 / 184件

新着順 人気順

python check if index in listの検索結果1 - 40 件 / 184件

  • Command Line Interface Guidelines

    Contents Command Line Interface Guidelines An open-source guide to help you write better command-line programs, taking traditional UNIX principles and updating them for the modern day. Authors Aanand Prasad Engineer at Squarespace, co-creator of Docker Compose. @aanandprasad Ben Firshman Co-creator Replicate, co-creator of Docker Compose. @bfirsh Carl Tashian Offroad Engineer at Smallstep, first e

      Command Line Interface Guidelines
    • Ubuntu 24.04 LTS サーバ構築手順書

      0 issue "letsencrypt.org" 0 issuewild "letsencrypt.org" 0 iodef "mailto:yourmail@example.jp" §OS再インストール 初期設定で期待通りの設定ができていない場合は、OSの再インストールをする。 さくらVPSのコントロールパネルから、OSを再インストールするサーバを選ぶ。 www99999ui.vs.sakura.ne.jp §OSのインストール操作 Ubuntu 24.04 LTS を選ぶ。 OSインストール時のパケットフィルタ(ポート制限)を無効にして、ファイアウォールは手動で設定することにする。 初期ユーザのパスワードに使える文字が制限されているので、ここでは簡単なパスワードにしておき、後ですぐに複雑なパスワードに変更する。 公開鍵認証できるように公開鍵を登録しておく。 §秘密鍵と公開鍵の作成 ク

        Ubuntu 24.04 LTS サーバ構築手順書
      • 大実験!ChatGPTは競プロの問題を解けるのか (2024年5月版) - E869120's Blog

        1. はじめに 2024 年 5 月 14 日、OpenAI 社から新たな生成 AI「GPT-4o」が発表され、世界に大きな衝撃を与えました。これまでの GPT-4 よりも性能を向上させただけでなく1、音声や画像のリアルタイム処理も実現し、さらに応答速度が大幅に速くなりました。「ついにシンギュラリティが来てしまったか」「まるで SF の世界を生きているような感覚だ」という感想も見受けられました。 しかし、いくら生成 AI とはいえ、競技プログラミングの問題を解くのは非常に難しいです。なぜなら競技プログラミングでは、問題文を理解する能力、プログラムを実装する能力だけでなく、より速く答えを求められる解法 (アルゴリズム) を考える能力も要求されるからです。もし ChatGPT が競技プログラミングを出来るようになれば他のあらゆるタスクをこなせるだろう、と考える人もいます。 それでは、現代最強の

          大実験!ChatGPTは競プロの問題を解けるのか (2024年5月版) - E869120's Blog
        • REST API Design Best Practices Handbook – How to Build a REST API with JavaScript, Node.js, and Express.js

          By Jean-Marc Möckel I've created and consumed many API's over the past few years. During that time, I've come across good and bad practices and have experienced nasty situations when consuming and building API's. But there also have been great moments. There are helpful articles online which present many best practices, but many of them lack some practicality in my opinion. Knowing the theory with

            REST API Design Best Practices Handbook – How to Build a REST API with JavaScript, Node.js, and Express.js
          • The Prompt Engineering Playbook for Programmers

            Developers are increasingly relying on AI coding assistants to accelerate our daily workflows. These tools can autocomplete functions, suggest bug fixes, and even generate entire modules or MVPs. Yet, as many of us have learned, the quality of the AI’s output depends largely on the quality of the prompt you provide. In other words, prompt engineering has become an essential skill. A poorly phrased

              The Prompt Engineering Playbook for Programmers
            • GitHub - modelcontextprotocol/servers: Model Context Protocol Servers

              Official integrations are maintained by companies building production ready MCP servers for their platforms. 21st.dev Magic - Create crafted UI components inspired by the best 21st.dev design engineers. ActionKit by Paragon - Connect to 130+ SaaS integrations (e.g. Slack, Salesforce, Gmail) with Paragon’s ActionKit API. Adfin - The only platform you need to get paid - all payments in one place, in

                GitHub - modelcontextprotocol/servers: Model Context Protocol Servers
              • MCP Python SDK のドキュメント|npaka

                以下の記事が面白かったので、簡単にまとめました。 ・modelcontextprotocol/python-sdk 1. 概要「MCP」を使用すると、アプリケーションは標準化された方法でLLMにコンテキストを提供できます。これにより、コンテキストの提供とLLMとの実際のやり取りを分離できます。「Python SDK」はMCP仕様を完全に実装しており、以下のことが容易になります。 ・任意のMCPサーバに接続できるMCPクライアントの構築 ・リソース、プロンプト、ツールを公開するMCPサーバの作成 ・stdio、SSE、Streamable HTTPなどの標準トランスポートの使用 ・すべてのMCPプロトコルメッセージとライフサイクルイベントの処理 2. インストール2-1. PythonプロジェクトにMCPを追加Pythonプロジェクトの管理には「uv」が推奨されています。 (1) プロジェク

                  MCP Python SDK のドキュメント|npaka
                • GPT in 60 Lines of NumPy | Jay Mody

                  January 30, 2023 In this post, we'll implement a GPT from scratch in just 60 lines of numpy. We'll then load the trained GPT-2 model weights released by OpenAI into our implementation and generate some text. Note: This post assumes familiarity with Python, NumPy, and some basic experience with neural networks. This implementation is for educational purposes, so it's missing lots of features/improv

                  • yt-dlp オプション一覧及びそのメモ - †MASAYOSHI†のオンラインメモ帳

                    youtube-dlの開発が止まっておりfork版のyt-dlpに移る事にした。yt-dlpはyoutube-dlのforkであるyoutube-dlcのそのまたforkになる。オリジナルであるyoutube-dlのオプション解説はyoutube-dl オプション一覧及びそのメモ。 2022/06/19更新 2022/09/06更新 OPTIONS -h, --helpヘルプを表示する。 --versionプログラムのVerを表示する。 -U, --update --no-update (default)プログラムのupdateを実行するかどうか。 -i, --ignore-errorsダウンロードエラーを無視する。プレイリストごとダウンロードするような時に使う。エラーで失敗してもダウンロードは成功したとみなされる。 --no-abort-on-error (default) --abor

                      yt-dlp オプション一覧及びそのメモ - †MASAYOSHI†のオンラインメモ帳
                    • Writing a C compiler in 500 lines of Python

                      A few months ago, I set myself the challenge of writing a C compiler in 500 lines of Python1, after writing my SDF donut post. How hard could it be? The answer was, pretty hard, even when dropping quite a few features. But it was also pretty interesting, and the result is surprisingly functional and not too hard to understand! There's too much code for me to comprehensively cover in a single blog

                      • How I Use Every Claude Code Feature

                        I use Claude Code. A lot. As a hobbyist, I run it in a VM several times a week on side projects, often with --dangerously-skip-permissions to vibe code whatever idea is on my mind. Professionally, part of my team builds the AI-IDE rules and tooling for our engineering team that consumes several billion tokens per month just for codegen. The CLI agent space is getting crowded and between Claude Cod

                          How I Use Every Claude Code Feature
                        • Flutterアプリの定期リリースを支える自動化 - Fast DOCTOR Technologies TECH BLOG

                          本稿では、ファストドクターのモバイルアプリのリリースフローを整備した取り組みについてご紹介します。 モチベーション ファストドクターのモバイルアプリは、2022年夏にFlutterでのフルリプレースを実施し、それ以降は機能の開発が完了次第随時リリースをするという戦略を取っていました。 この戦略はシンプルであり、開発に関わっているステークホルダーが少ない状況下でうまく機能していました。しかし、組織の拡大に伴い以下のような問題が発生するようになりました。 複数機能の開発スケジュールの調整をしたり、バックエンドのリリース・QAとの整合性を取ったりという必要性が増し、調整コストが肥大化 リリースが不定期なため、いつPull Requestをマージすれば良いか分からずopenされたままのPull Requestが多数 この状況を改善するために、以下の要件を念頭に定期的なリリースとそれを支える仕組みを

                            Flutterアプリの定期リリースを支える自動化 - Fast DOCTOR Technologies TECH BLOG
                          • 型安全かつシンプルなAgentフレームワーク「PydanticAI」の実装を解剖する - ABEJA Tech Blog

                            はじめに こちらはABEJAアドベントカレンダー2024 12日目の記事です。 こんにちは、ABEJAでデータサイエンティストをしている坂元です。最近はLLMでアプローチしようとしていたことがよくよく検証してみるとLLMでは難しいことが分かり急遽CVのあらゆるモデルとレガシーな画像処理をこれでもかというくらい詰め込んだパイプラインを実装することになった案件を経験して、LLMでは難しそうなことをLLM以外のアプローチでこなせるだけの引き出しとスキルはDSとしてやはり身に付けておくべきだなと思うなどしています(LLMにやらせようとしていることは大抵難しいことなので切り替えはそこそこ大変)。 とはいうものの、Agentの普及によってより複雑かつ高度な推論も出来るようになってきています。弊社の社内外のプロジェクト状況を見ていても最近では単純なRAG案件は減りつつあり、計画からアクションの実行、結果

                              型安全かつシンプルなAgentフレームワーク「PydanticAI」の実装を解剖する - ABEJA Tech Blog
                            • How to make an awesome Python package

                              If you are like me, every once in a while you write a useful python utility and want to share it with your colleagues. The best way to do this is to make a package: it easy to install and saves from copy-pasting. If you are like me, you might be thinking that creating packages is a real headache. Well, that's not the case anymore. And I am going to prove it with this step-by-step guide. Just three

                                How to make an awesome Python package
                              • ChatGPT Retrieval Pluginに任意のベクトル検索エンジンProviderを実装する - エムスリーテックブログ

                                Overview エムスリーエンジニアリンググループ AI・機械学習チームでソフトウェアエンジニアをしている中村(po3rin) です。検索とGoが好きです。 エムスリーではChatGPTの可能性にいち早く注目して活用を検討している段階ですが、本格的なデータ投入にはまだ懸念もあり、セキュリティチームと検討を進めている段階です。 そんな中で個人または組織のドキュメントのセマンティック検索と取得を可能にするChatGPTプラグイン「ChatGPT Retrieval Plugin」が登場しました。 github.com 情報検索好きとしては黙っていられず、外部公開用のエムスリーAI・機械学習チームのメンバー紹介ドキュメントを使ってローカルで試してみました。 # 用意したドキュメント 中村弘武は東京都在住で、エムスリーという企業で働いでいます。 エムスリーの検索基盤を主に担当しています。また、書

                                  ChatGPT Retrieval Pluginに任意のベクトル検索エンジンProviderを実装する - エムスリーテックブログ
                                • ChatGPT時代に必要かも!? Pythonで実行するファイルパース(PDF編) | DevelopersIO

                                  こんちには。 データアナリティクス事業本部 インテグレーション部 機械学習チームの中村です。 今回は話題のChatGPTにコンテキストを与える際に必要となるファイルパース処理について見ていきたいと思います。 本記事ではPDFに焦点を絞ってみていきます。既存のライブラリ内の実装も確認していきます。 先行事例の実装 先行事例の実装として、よく話題となる以下のライブラリを見ていきます。 (LlamaIndexとLlamaHubはほぼ同じですが、parserとしては片方にしかないものもあるため) LlamaIndex https://github.com/jerryjliu/llama_index https://gpt-index.readthedocs.io/en/latest/index.html LlamaHub https://github.com/emptycrown/llama-hu

                                    ChatGPT時代に必要かも!? Pythonで実行するファイルパース(PDF編) | DevelopersIO
                                  • LogLog Games

                                    The article is also available in Chinese. Disclaimer: This post is a very long collection of thoughts and problems I've had over the years, and also addresses some of the arguments I've been repeatedly told. This post expresses my opinion the has been formed over using Rust for gamedev for many thousands of hours over many years, and multiple finished games. This isn't meant to brag or indicate su

                                    • What We Learned from a Year of Building with LLMs (Part I)

                                      It’s an exciting time to build with large language models (LLMs). Over the past year, LLMs have become “good enough” for real-world applications. The pace of improvements in LLMs, coupled with a parade of demos on social media, will fuel an estimated $200B investment in AI by 2025. LLMs are also broadly accessible, allowing everyone, not just ML engineers and scientists, to build intelligence into

                                        What We Learned from a Year of Building with LLMs (Part I)
                                      • RubyのGVLを消し去りたいあなたへ(翻訳)|TechRacho by BPS株式会社

                                        概要 原著者の許諾を得て翻訳・公開いたします。 英語記事: So You Want To Remove The GVL? | byroot’s blog 原文公開日: 2025/01/29 原著者: byroot -- Railsコアコミッター、Rubyコミッターであり、ShopifyのRuby/Railsインフラチームのシニアスタッフエンジニアです 日本語タイトルは内容に即したものにしました。 GVLは「グローバルVMロック」の略ですが、「ジャイアントVMロック」とされることもあります。 参考: Rubyの(グローバル)VMロックをトレースする(翻訳) 参考: スレッド (Ruby 3.4 リファレンスマニュアル) 私がやりたいのは、Pitchforkに関する記事を書いて、これがどんな理由でできたのか、なぜ現在のような形になったのか、そして今後どうなるのかについて説明することです。しかし

                                          RubyのGVLを消し去りたいあなたへ(翻訳)|TechRacho by BPS株式会社
                                        • 📖 vLLMのコードを読んでみよう - ENGINEERING BLOG ドコモ開発者ブログ

                                          こんにちは、NTTドコモR&D戦略部の門間です。 この記事では、vLLMのコードを追いつつその中身の動きに迫りたいと思います。 最近、業務やプライベートでLLM関連のいろいろを触っていますが、 OSSのコードリーディングを通じてLLMの推論処理への理解を深めたいというモチベーションです。 🤖 vLLMって? 📚 前提知識 Attention Is All You Need Paged Attention Continuous Batching 📦 vLLMの開発用インストール (Pythonコード開発のみ) Wheelのインストール リポジトリのクローン 起動確認 Pythonコードの改変 デバッガを使ったOSSのコードリーディングのススメ 🧩 vLLMのソフトウェアアーキテクチャ オンライン推論 : FastAPIサーバの立ち上げとEngineClientの生成 1. Engin

                                            📖 vLLMのコードを読んでみよう - ENGINEERING BLOG ドコモ開発者ブログ
                                          • 第752回 RISC-VのシングルボードコンピューターであるVisionFive 2を使ってみる | gihyo.jp

                                            今回はStarFive Technology製のRISC-Vシングルボードコンピューター(SBC)であるVisionFive 2にDebianをインストールして、その性能を計測してみましょう。 RISC-VとVisionFive 2 RISC-V(りすく・ふぁいぶ)は今もっとも熱い命令セットアーキテクチャーです。2010年頃に生まれたRISC-Vは、オープンな規格という強みを活かしてどんどんエコシステムを構築し、今では様々な企業がRISC-Vに本格的に手を出す状況になっています。AMD64/Intel 64やARMには性能も普及度合いもまだまだ及びませんが、今の勢いを維持できれば近い将来その状況は変わってくるでしょう。 本連載でも2018年ぐらいから、RISC-Vの記事を何度か取り上げていました。 第505回:「オープン規格の新しい命令セットアーキテクチャRISC-V入門 ツールチェインを

                                              第752回 RISC-VのシングルボードコンピューターであるVisionFive 2を使ってみる | gihyo.jp
                                            • Changing std::sort at Google’s Scale and Beyond

                                              TL;DR; We are changing std::sort in LLVM’s libcxx. That’s a long story of what it took us to get there and all possible consequences, bugs you might encounter with examples from open source. We provide some benchmarks, perspective, why we did this in the first place and what it cost us with exciting ideas from Hyrum’s Law to reinforcement learning. All changes went into open source and thus I can

                                                Changing std::sort at Google’s Scale and Beyond
                                              • openai/gpt-oss-120b · Hugging Face

                                                ","eos_token":"<|return|>","pad_token":"<|endoftext|>"},"chat_template_jinja":"{#-\n In addition to the normal inputs of `messages` and `tools`, this template also accepts the\n following kwargs:\n - \"builtin_tools\": A list, can contain \"browser\" and/or \"python\".\n - \"model_identity\": A string that optionally describes the model identity.\n - \"reasoning_effort\": A string that describes t

                                                  openai/gpt-oss-120b · Hugging Face
                                                • Taming Go’s Memory Usage, or How We Avoided Rewriting Our Client in Rust — Akita Software

                                                  Taming Go’s Memory Usage, or How We Avoided Rewriting Our Client in Rust A couple months ago, we faced a question many young startups face. Should we rewrite our system in Rust? At the time of the decision, we were a Go and Python shop. The tool we’re building passively watches API traffic to provide “one-click,” API-centric visibility, by analyzing the API traffic. Our users run an agent that sen

                                                    Taming Go’s Memory Usage, or How We Avoided Rewriting Our Client in Rust — Akita Software
                                                  • How to create a Python package in 2022

                                                    Photo by Claudio Schwarz on Unsplash. How to create a Python package? In order to create a Python package, you need to write the code that implements the functionality you want to put in your package, and then you need to publish it to PyPI. That is the bare minimum. Nowadays, you can also set up a variety of other things to make your life easier down the road: continuous testing of your package;

                                                      How to create a Python package in 2022
                                                    • Announcing TypeScript 5.2 - TypeScript

                                                      Today we’re excited to announce the release of TypeScript 5.2! If you’re not familiar with TypeScript, it’s a language that builds on top of JavaScript by making it possible to declare and describe types. Writing types in our code allows us to explain intent and have other tools check our code to catch mistakes like typos, issues with null and undefined, and more. Types also power TypeScript’s edi

                                                        Announcing TypeScript 5.2 - TypeScript
                                                      • 実験の再現性を高めるデータバージョン管理(DVC)の紹介 - techtekt

                                                        データバージョンの管理とは? データバージョンの管理とは、バイナリデータのバージョンを管理することを指します。データバージョンの管理は、Git 等でのコードのバージョン管理をバイナリデータに拡張しています。実験の再現性を高められるメリットがあります。 DVC とは? データのバージョンを管理する機能をもつオープンソースソフトウェアです。データのハッシュをテキストファイルで保持し git でバージョン管理します。また、yaml ファイルで実行パイプラインを定義して監視対象データが更新された際にハッシュを更新することで、新しいハッシュ値を含んだデータをバージョン管理します。更新されたデータファイルはキャッシュディレクトリに保存され、必要なタイミングで自動的に復元されます。 データのリモートリポジトリを定義することで、データ一式を簡単なコマンド操作で S3 等へ push / pull すること

                                                          実験の再現性を高めるデータバージョン管理(DVC)の紹介 - techtekt
                                                        • Notes by djb on using Fil-C (2025)

                                                          Notes by djb on using Fil-C (2025) I'm impressed with the level of compatibility of the new memory-safe C/C++ compiler Fil-C (filcc, fil++). Many libraries and applications that I've tried work under Fil-C without changes, and the exceptions haven't been hard to get working. I've started accumulating miscellaneous notes on this page regarding usage of Fil-C. My selfish objective here is to protect

                                                          • June 2022 (version 1.69)

                                                            Update 1.69.1: The update addresses these issues. Update 1.69.2: The update addresses these issues. Downloads: Windows: x64 Arm64 | Mac: Universal Intel silicon | Linux: deb rpm tarball Arm snap Welcome to the June 2022 release of Visual Studio Code. There are many updates in this version that we hope you'll like, some of the key highlights include: 3-way merge editor - Resolve merge conflicts wit

                                                              June 2022 (version 1.69)
                                                            • March 2025 (version 1.99)

                                                              Update 1.99.1: The update addresses these security issues. Update 1.99.2: The update addresses these issues. Update 1.99.3: The update addresses these issues. Downloads: Windows: x64 Arm64 | Mac: Universal Intel silicon | Linux: deb rpm tarball Arm snap Welcome to the March 2025 release of Visual Studio Code. There are many updates in this version that we hope you'll like, some of the key highligh

                                                                March 2025 (version 1.99)
                                                              • Running LLaMA 7B and 13B on a 64GB M2 MacBook Pro with llama.cpp

                                                                Running LLaMA 7B and 13B on a 64GB M2 MacBook Pro with llama.cpp See also: Large language models are having their Stable Diffusion moment right now. Facebook's LLaMA is a "collection of foundation language models ranging from 7B to 65B parameters", released on February 24th 2023. It claims to be small enough to run on consumer hardware. I just ran the 7B and 13B models on my 64GB M2 MacBook Pro! I

                                                                  Running LLaMA 7B and 13B on a 64GB M2 MacBook Pro with llama.cpp
                                                                • RFC 9562: Universally Unique IDentifiers (UUIDs)

                                                                   Internet Engineering Task Force (IETF) K. Davis Request for Comments: 9562 Cisco Systems Obsoletes: 4122 B. Peabody Category: Standards Track Uncloud ISSN: 2070-1721 P. Leach University of Washington May 2024 Universally Unique IDentifiers (UUIDs) Abstract This specification defines UUIDs (Universally Unique IDentifiers) -- also known as GUIDs (Globally Unique IDentifiers) -- and a Uniform Resou

                                                                    RFC 9562: Universally Unique IDentifiers (UUIDs)
                                                                  • Green Vs. Brown Programming Languages

                                                                    This article explores programming language preferences. You might prefer Earthly. It can streamline your build processes. Check it out. The Data The Stack Overflow Developer Survey1 results are a great source of information about how developers work. I was looking at the 2020 results for some ideas on what programming languages we should add to our documentation on containerized builds, and I noti

                                                                      Green Vs. Brown Programming Languages
                                                                    • Jupyter in Visual Studio Code – April 2021 Release - Microsoft for Python Developers Blog

                                                                      We are pleased to announce that the April 2021 release of the Jupyter Extension for Visual Studio Code is now available. If working with Python, we recommend installing the Python extension directly from the extension gallery in Visual Studio Code. If you already have the Python or Jupyter extensions installed, you can also get the latest update by restarting Visual Studio Code. You can learn more

                                                                        Jupyter in Visual Studio Code – April 2021 Release - Microsoft for Python Developers Blog
                                                                      • AST vs. Bytecode: Interpreters in the Age of Meta-Compilation

                                                                        233 AST vs. Bytecode: Interpreters in the Age of Meta-Compilation OCTAVE LAROSE, University of Kent, UK SOPHIE KALEBA, University of Kent, UK HUMPHREY BURCHELL, University of Kent, UK STEFAN MARR, University of Kent, UK Thanks to partial evaluation and meta-tracing, it became practical to build language implementations that reach state-of-the-art peak performance by implementing only an interprete

                                                                        • April 2022 (version 1.67)

                                                                          Join a VS Code Dev Days event near you to learn about AI-assisted development in VS Code. Update 1.67.1: The update addresses this security issue. Update 1.67.2: The update addresses these issues. Downloads: Windows: x64 Arm64 | Mac: Universal Intel silicon | Linux: deb rpm tarball Arm snap Welcome to the April 2022 release of Visual Studio Code. There are many updates in this version that we hope

                                                                            April 2022 (version 1.67)
                                                                          • May 2025 (version 1.101)

                                                                            Release date: June 12, 2025 Security update: The following extension has security updates: ms-python.python. Update 1.101.1: The update addresses these issues. Update 1.101.2: The update addresses these issues. Downloads: Windows: x64 Arm64 | Mac: Universal Intel silicon | Linux: deb rpm tarball Arm snap Welcome to the May 2025 release of Visual Studio Code. There are many updates in this version

                                                                              May 2025 (version 1.101)
                                                                            • Improving the Developer Experience with the Ruby LSP - Shopify

                                                                              Improving the Developer Experience with the Ruby LSPThe Ruby LSP is a new language server built at Shopify that makes coding in Ruby even better by providing extra Ruby features for any editor that has a client layer for the LSP. In this article, we’ll cover how we built the Ruby LSP, the features included within it, and how you can install it. Ruby has an explicit goal to make developers happy. H

                                                                                Improving the Developer Experience with the Ruby LSP - Shopify
                                                                              • Parsing SQL - Strumenta

                                                                                The code for this tutorial is on GitHub: parsing-sql SQL is a language to handle data in a relational database. If you worked with data you have probably worked with SQL. In this article we will talk about parsing SQL. It is in the same league of HTML: maybe you never learned it formally but you kind of know how to use it. That is great because if you know SQL, you know how to handle data. However

                                                                                  Parsing SQL - Strumenta
                                                                                • データ収集から機械学習まで全て行って競馬の予測をしてみた

                                                                                  概要 ※ Qiitaから移行して、一部追記しました(さらに追記の項を参照) 元タイトル:データ収集からディープラーニングまで全て行って競馬の予測をしてみた 某T大学で情報系を専攻している学生です。Qiitaの記事を色々見ていたら、こんな記事を発見。 ディープラーニングさえあれば、競馬で回収率100%を超えられる この記事の回収率100%達成に関しては、購入シミュレーションした馬券の数が少ないので、他の期間でも成立するのかはわかりません。ソースコードも有料なのでどうやっているのかの詳細もわかりません。しかし、自分で競馬予測をしてみても面白そうだと思ったので、勉強するつもりで実際にやってみました。 データ収集・分析・予測のすべてを行うことになるのでかなり勉強になります。 なぜ競馬なのか? もしかしたらお金になるかもしれないという欲もありましたが、競馬は控除率が高いらしいのであまり期待はできませ

                                                                                    データ収集から機械学習まで全て行って競馬の予測をしてみた