並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 40 件 / 488件

新着順 人気順

python format for stringの検索結果1 - 40 件 / 488件

  • Command Line Interface Guidelines

    Contents Command Line Interface Guidelines An open-source guide to help you write better command-line programs, taking traditional UNIX principles and updating them for the modern day. Authors Aanand Prasad Engineer at Squarespace, co-creator of Docker Compose. @aanandprasad Ben Firshman Co-creator Replicate, co-creator of Docker Compose. @bfirsh Carl Tashian Offroad Engineer at Smallstep, first e

      Command Line Interface Guidelines
    • Netflixにおける実用的なAPI設計: gRPCとFieldMask | pyspa

      Netflix Tech BlogのgRPC APIに関する以下の2つの記事に感銘を受けたので、ここにその概要を日本語で記します。 (めんどくさかったので)翻訳の許可は取ってませんが、再構成してますし元のJavaではなくPythonで書き直していますので、容赦して下さい… Practical API Design at Netflix, Part 1: Using Protobuf FieldMaskPractical API Design at Netflix, Part 2: Protobuf FieldMask for Mutation OperationsまとめgRPCでは、FieldMaskをうまく使うことで、必要な情報だけ取得したりあるいは与えたりしたりできまっせ第一部まずField Maskをどのように使うかを述べています。 背景Remote Callというものは、そもそもコ

        Netflixにおける実用的なAPI設計: gRPCとFieldMask | pyspa
      • 日本株3700社以上を分析。yfinance x「わが投資術」株式スクリーニングアプリを作った話(バイブコーディング)

        いきなりですが。 海外旅行したり働き始めたりすると、日本の良さが身に染みたと感じた人は多いんじゃないでしょうか? なんかとりあえず外で働いてみたいと思っていましたが、今はいつ戻るかと考える日々です。(とにかく温泉に入りたい) また色々と各国を回る中で、日本企業ってアジア圏や他の国にもかなり進出してるんだなぁと実感しました。(そりゃそう) そんなこんなで日本株に興味を持ち 昨年にわが投資術を購入して実践し始めました。(まだ初めて一年目なので成績はわかりません。。。が、マイナスは無し) 自分でバフェットコードや Claude mcp-yfinance などを利用しながらスクリーニングしてみましたが、毎回決算が出るたびに手動とチャット相手にあるのも何かなぁ。と思いまして。 じゃあ自動収集とスクリーニング用のアプリ作ってみよう(vibe coding) そんなノリから、日本株全銘柄を自動収集・簡易

          日本株3700社以上を分析。yfinance x「わが投資術」株式スクリーニングアプリを作った話(バイブコーディング)
        • Ubuntu 24.04 LTS サーバ構築手順書

          0 issue "letsencrypt.org" 0 issuewild "letsencrypt.org" 0 iodef "mailto:yourmail@example.jp" §OS再インストール 初期設定で期待通りの設定ができていない場合は、OSの再インストールをする。 さくらVPSのコントロールパネルから、OSを再インストールするサーバを選ぶ。 www99999ui.vs.sakura.ne.jp §OSのインストール操作 Ubuntu 24.04 LTS を選ぶ。 OSインストール時のパケットフィルタ(ポート制限)を無効にして、ファイアウォールは手動で設定することにする。 初期ユーザのパスワードに使える文字が制限されているので、ここでは簡単なパスワードにしておき、後ですぐに複雑なパスワードに変更する。 公開鍵認証できるように公開鍵を登録しておく。 §秘密鍵と公開鍵の作成 ク

            Ubuntu 24.04 LTS サーバ構築手順書
          • MCPでLLMに行動させる - Terraformを例とした tfmcp の紹介 - じゃあ、おうちで学べる

            はじめに こんにちは!今回は、私が最近開発した tfmcp というツールを紹介します。これは Terraform を LLM(大規模言語モデル)から操作できるようにするツールで、Model Context Protocol (MCP) を活用しています。 github.com このブログが良ければ読者になったり、GitHub リポジトリにStarをいただけると開発の励みになります。nwiizoをフォロワーしてくれるのもありがたいです。より良いツール開発のためのフィードバックもお待ちしています! MCP とは何か? 記事を始める前に、まず MCP (Model Context Protocol) について簡単に説明しましょう。MCP についてより詳しい情報は、公式ドキュメント modelcontextprotocol.io や Anthropic の Model Context Protoc

              MCPでLLMに行動させる - Terraformを例とした tfmcp の紹介 - じゃあ、おうちで学べる
            • 浮動小数点型の算術とお近づきになりたい人向けの記事 - えびちゃんの日記

              お近づきになりたい人向けシリーズです。 いろいろなトピックを詰め込みましたが、「これら全部を知らないといけない」のようなつもりではなく、いろいろなことを知るきっかけになったらいいなという気持ちなので、あまり身構えずにちょっとずつ読んでもらえたらうれしい気がします。 まえがき 予備知識 規格 用語 精度という語について 記法 表現について 有限値の表現について エンコードについて 丸めについて よくある誤差や勘違いの例 0.1 = 1 / 10? 0.1 + 0.2 = 0.3? 整数の誤差 Rump’s Example 基本的な誤差評価 用語に関して 実数の丸め 有理数の丸め 基本演算の丸め 差について 複数回の演算 補題たち 桁落ちについて Re: Rump’s example 融合積和 数学関数に関する式の計算 誤差の削減に関して 総和計算 数学関数の精度について 比較演算について 雑

                浮動小数点型の算術とお近づきになりたい人向けの記事 - えびちゃんの日記
              • 分散データシステム入門の決定版『データ指向アプリケーションデザイン』をたった30分で学んでみた #DataEngineeringStudy | DevelopersIO

                基調講演「30分でわかるデータ指向アプリケーションデザイン」 ・ スピーカー 斉藤 太郎氏  Twitter:@taroleo / Github:@xerial Principal Software Engineer , Treasure Data 東京大学理学部情報科学科卒。情報理工学 Ph.D。データベース、大規模ゲノムデータ処理の研究に従事。その後、スタートアップであるTreasure Dataに加わり、アメリカ、シリコンバレーを拠点に活動中。日本データベース学会上林奨励賞受賞。OSSを中心にプログラミングやデータ処理を簡単にするためのプロダクトを作成している。 「30分でわかるデータ指向アプリケーションデザイン」最新の論文にも触れながら、分散データシステムの世界の魅力を伝えていきます。後半、@tagomoris https://t.co/TQ2TnsFIOT… — Taro L.

                  分散データシステム入門の決定版『データ指向アプリケーションデザイン』をたった30分で学んでみた #DataEngineeringStudy | DevelopersIO
                • 敵対的プロンプト技術まとめ - Qiita

                  こんにちは@fuyu_quantです。 この記事はLLM Advent Calender 2023 17日目の記事です。 よかったらプライベートで作成したData Science wikiのGPTsも見て下さい! はじめに 今回は敵対的なプロンプト技術についてまとめました.まとめ方は主に,Ignore This Title and HackAPrompt: Exposing Systemic Vulnerabilities of LLMs through a Global Scale Prompt Hacking Competition というLLMに対する敵対的なプロンプト技術に関してまとめた論文を参考にしています.本記事の内容が世の中のLLMを使ったサービスの機能向上の役に立てれば幸いです. ※世の中のLLMサービスが敵対的なプロンプト手法に対応できるように公開をしたものであり,利用を

                    敵対的プロンプト技術まとめ - Qiita
                  • プロと読み解く Ruby 3.0 NEWS - クックパッド開発者ブログ

                    技術部の笹田(ko1)と遠藤(mame)です。クックパッドで Ruby (MRI: Matz Ruby Implementation、いわゆる ruby コマンド) の開発をしています。お金をもらって Ruby を開発しているのでプロの Ruby コミッタです。 本日 12/25 に、ついに Ruby 3.0.0 がリリースされました。一昨年、昨年に続き、今年も Ruby 3.0 の NEWS.md ファイルの解説をします。NEWS ファイルとは何か、は一昨年の記事を見てください(なお Ruby 3.0.0 から、NEWS.md にファイル名を変えました)。 プロと読み解く Ruby 2.6 NEWS ファイル - クックパッド開発者ブログ プロと読み解くRuby 2.7 NEWS - クックパッド開発者ブログ Ruby 3.0 は、Ruby にとってほぼ 8 年ぶりのメジャーバージョンア

                      プロと読み解く Ruby 3.0 NEWS - クックパッド開発者ブログ
                    • The End of Programming as We Know It

                      Join the O'Reilly online learning platform. Get a free trial today and find answers on the fly, or master something new and useful. Learn more Betty Jean Jennings and Frances Bilas (right) program the ENIAC in 1946. Via the Computer History Museum Eventually, interpreted languages, which are much easier to debug, became the norm. BASIC, one of the first of these to hit the big time, was at first s

                        The End of Programming as We Know It
                      • LangChainを使わない - ABEJA Tech Blog

                        TL; DR LangChainのメリデメを整理する過程で、今となってはopenai-pythonのうちChatGPTのAPIをを簡単に取り回せる程度のシンプルなライブラリがあるだけでも十分便利なんじゃないかと思ったので、ライブラリを個人で作ってみました。(バージョン0.0.1なのでちょっとお粗末な所もありますが) github.com はじめに こんにちは、データサイエンティストの坂元です。ABEJAアドベントカレンダーの13日目の記事です。世は大LLM時代ということで、ありがたいことにABEJAでも複数のLLMプロジェクトを推進させて頂いています。私自身もいくつかのLLMプロジェクトに参画しています。LLMといえばLangChainが便利ですね。OpenAI APIの利用だけでなく、各種ドキュメントのパースが出来たり、HuggingFaceやインデックスDBを扱う他のライブラリとインテ

                          LangChainを使わない - ABEJA Tech Blog
                        • みんなのためのLLMアプリケーション開発環境の構築事例

                          はじめに こんにちは。Game Platform DevのDong Hun Ryoo、Takenaka、Zhang Youlu(Michael)、Hyungjung Leeです。私たちの組織は、ゲームパブリッシングに必要なさまざまな機能を開発・運用する役割を担っています。 私たちは最近、組織内の業務効率を高めるためにさまざまなLLM(large language model)アプリケーションを開発し、それと連携してLLMOpsシステムの構築プロジェクトを行いました。プロジェクトの主な目標の一つは、参入障壁が高いLLMアプリケーション開発を、職種に関係なく誰でも簡単に作成できる環境を構築することでした。そのため、さまざまなことを考えながら試行錯誤を経た結果、誰でも簡単にアクセスできる開発・デプロイ環境を整えました。 今回の記事では、LLMアプリケーションの一般的な開発方法と開発プロセスで直面

                            みんなのためのLLMアプリケーション開発環境の構築事例
                          • LLMガードレールの活用法と役割を正しく理解する - GMO Flatt Security Blog

                            TL;DR LLMガードレールはLLMの入出力を監視・制御する技術であり、LLMアプリケーションにおける様々な脅威への対抗策になります。しかし、あくまで役割は脅威の緩和・低減であるため、それぞれの脅威に対する根本的な対策をした上で、万が一の事故に備え文字通りガードレールとして導入する必要があります。 本文中では、RAGアプリケーションの利用する外部データベースにプロンプトインジェクションを引き起こすデータが存在し、LLMに対する入力として利用された場合、LLMガードレールで検知する例を紹介しています。しかし、根本的には外部データベースに悪意あるデータが登録されないよう対策すべきです。 このブログではLLMガードレールで対応できる脅威を実際に検証しながら整理し、適切なユースケースを議論します。 はじめに こんにちは、GMO Flatt Security株式会社所属のセキュリティエンジニア滝上

                              LLMガードレールの活用法と役割を正しく理解する - GMO Flatt Security Blog
                            • Content-Disposition の filename という地雷。 (1個の観点で17個の脆弱性を見つけた話) - ぶるーたるごぶりん

                              English ver: https://gist.github.com/motoyasu-saburi/1b19ef18e96776fe90ba1b9f910fa714#file-lack_escape_content-disposition_filename-md TL;DR 1つのブラウザ、1つのプログラミング言語、15個の { Web Framework, HTTP Client ライブラリ, Email ライブラリ / Web Service 等} で脆弱性を見つけました。 見つけた脆弱性は、全て 1つの観点で発見した (多分 50-80 くらいのプロダクトの調査をした)。 RFC の記載では、(かなりわかりにくく)この問題に対する要件が記載されており、WHATWG > HTML Spec の方はしっかりと書かれているといった状況にある。 この問題は、 Content-Dispo

                                Content-Disposition の filename という地雷。 (1個の観点で17個の脆弱性を見つけた話) - ぶるーたるごぶりん
                              • 大実験!ChatGPTは競プロの問題を解けるのか (2024年5月版) - E869120's Blog

                                1. はじめに 2024 年 5 月 14 日、OpenAI 社から新たな生成 AI「GPT-4o」が発表され、世界に大きな衝撃を与えました。これまでの GPT-4 よりも性能を向上させただけでなく1、音声や画像のリアルタイム処理も実現し、さらに応答速度が大幅に速くなりました。「ついにシンギュラリティが来てしまったか」「まるで SF の世界を生きているような感覚だ」という感想も見受けられました。 しかし、いくら生成 AI とはいえ、競技プログラミングの問題を解くのは非常に難しいです。なぜなら競技プログラミングでは、問題文を理解する能力、プログラムを実装する能力だけでなく、より速く答えを求められる解法 (アルゴリズム) を考える能力も要求されるからです。もし ChatGPT が競技プログラミングを出来るようになれば他のあらゆるタスクをこなせるだろう、と考える人もいます。 それでは、現代最強の

                                  大実験!ChatGPTは競プロの問題を解けるのか (2024年5月版) - E869120's Blog
                                • Building a tiny Linux from scratch

                                  Last week, I built a tiny Linux system from scratch, and booted it on my laptop! Here’s what it looked like: Let me tell you how I got there. I wanted to learn more about how the Linux kernel works, and what’s involved in booting it. So I set myself the goal to cobble together the bare neccessities required to boot into a working shell. In the end, I had a tiny Linux system with a size of 2.5 MB,

                                    Building a tiny Linux from scratch
                                  • OpenAI API ドキュメント 日本語訳|#2 GET STARTED 後編|ゑぐみかるちゃあ

                                    OpenAI API ドキュメントの日本語訳をこちらでまとめます。文字量の多いドキュメントなので、セクションごとに記事を分割しています。 今回は「GET STARTED 」のセクションからLibraries 、Models、TutorialsそしてUsage policiesを抜粋した後編です。 基本 DeepLで翻訳して、気になるところだけ書き換えています(ほぼ気になるところがないのが、DeepLのすごいところ)。原文との突き合わせができるようにはじめに原文を入れてますので、間違いなど見つけられましたら、ぜひご指摘ください。ご指摘箇所は随時反映させていただきます。 原文のリンクが有効になってますので、それぞれ必要な場合は原文リンクの方を参照ください。 前回のおさらいはこちら Python library|Python ライブラリWe provide a Python library, w

                                      OpenAI API ドキュメント 日本語訳|#2 GET STARTED 後編|ゑぐみかるちゃあ
                                    • 【Streamlitよりいいかも?】機械学習系のデモアプリ作成に最適!Gradio解説 - 学習する天然ニューラルネット

                                      はじめに Streamlit vs Gradio Gradioの設計思想 Interface 入出力に応じたUI Interface String Shortcut 入力データのサンプルのセット ドキュメンテーション テーマの変更 タイムアウトへの対処 中級者への第一歩、デモを作る際に知っておきたい処理 Gradioが担当する前処理について プログレスバー もろもろの出力結果を保存するには? 認証認可(というか認可) その他、解説しないが需要の有りそうなもの まとめ 追記 : 動画になりました。 はじめに 機械学習系のデモアプリを作成することがしばしばありStreamlitを使用していたが、パラメーターなどをいじるたびに処理が最初から走るなどといった挙動に悩まされていた。 同僚がGradioというのを使っていたのでサーベイがてらメモしていたらブログが出来上がってしまった。 本ブログでは、G

                                        【Streamlitよりいいかも?】機械学習系のデモアプリ作成に最適!Gradio解説 - 学習する天然ニューラルネット
                                      • act: GitHub Actions のワークフローをローカル環境で実行する - kakakakakku blog

                                        GitHub Actions でワークフローを実行するときに git commit と git push を実行して GitHub Actions の実行を待つことがよくある.より迅速に実行して,結果を受け取るために「act」を使って GitHub Actions をローカル環境(コンテナ)で実行する仕組みを試してみた.便利だったので紹介しようと思う❗️ 当然ながら GitHub Actions を完全再現できてるわけではなく,最終的には GitHub Actions を使うことにはなるけど,特に開発中に頻繁にテストを実行できるのはメリットだと思う.うまく併用しながら開発体験を高めよう👌 github.com セットアップ macOS の場合は Homebrew を使って簡単にセットアップできる.他には Chocolatey (Windows) や Bash script も選べる.今回

                                          act: GitHub Actions のワークフローをローカル環境で実行する - kakakakakku blog
                                        • YAML完全活用マニュアル──AIエージェント開発とプロンプト工学の次世代標準|hirokaji

                                          はじめに:いま、YAMLを再評価する理由2025年、生成AIとプロンプトエンジニアリングの発展は新たな開発様式をもたらしました。 ChatGPT、Claude、Geminiといったモデルの急速な進化により、LLM(大規模言語モデル)との対話は単なる質問応答を超え、構造化された命令、複雑な推論、そしてマルチエージェント間の協調へと展開しています。 こうした「AIが行動する時代」において、従来のコードやスクリプトだけではカバーしきれない、構成・設定・意味づけのインターフェースとして脚光を浴びているのが YAML です。 YAMLはもともと構成ファイルとして使われてきた言語ですが、 自然な階層構造 可読性の高さ コメントによる意図の明示 データとしての再利用性 JSON互換性 といった特徴により、人間とAI、開発者とエージェントの共通言語としての地位を獲得しつつあります。 特に近年はX(旧Twi

                                            YAML完全活用マニュアル──AIエージェント開発とプロンプト工学の次世代標準|hirokaji
                                          • 遅くないpandasの書き方 - ML_BearのKaggleな日常

                                            これは何? この記事は Kaggle Advent Calendar 2021 の7日目の記事です。 pandasはデータ分析ライブラリとして非常に便利ですが、書き方を間違えると簡単に処理が遅くなってしまうという欠点があります。そこで、この記事では遅くならない書き方をするために気をつけたいポイントをいくつかご紹介したいと思います。 この Colab Notebookの実行結果をエクスポートした上で、不要な部分を一部削って記事にしています。colab notebook をコピーして実行してもらえれば再現することが可能なはずです。(colabにコメント等をいただいても返すことはできないと思います、すみません。) 前提条件 この記事ではあくまで「遅くない(なりづらい)書き方を紹介する」ことに努めます。よって、以下のような改善点はあるが一旦考慮の外におくものとして話を進めます。 並列化ライブラリ

                                              遅くないpandasの書き方 - ML_BearのKaggleな日常
                                            • WebAssemblyを用いてBERTモデルをフロントエンドで動かす - OPTiM TECH BLOG

                                              はじめまして。R&Dチーム所属、20.5卒の伊藤です。 普段の業務では自然言語処理と格闘していることが多いです。 今回は自然言語処理モデルとして有名なBERTをWebAssemblyを使用してフロントエンドで動かしてみた話になります。 最近、自然言語処理ライブラリとして普段お世話になっているHugging Face社のTransformersのTokenizerがRustで実装されていることを知り、それならばWebAssemblyにコンパイルして動かせるのではないかと試したみたのがきっかけです。 Tokenizerのみ動かしても実用性に乏しいため、Tokenizerから得られた結果からBERTを用いた推論をブラウザで動作させるまでを行い、備忘録がでら手順をまとめました。 どなたかの参考になれば幸いです。 8/26追記 本記事内のコードを含むリポジトリを公開しました!Dockerを使用してブ

                                                WebAssemblyを用いてBERTモデルをフロントエンドで動かす - OPTiM TECH BLOG
                                              • gpt-5 leaked system prompt

                                                gistfile1.txt �T�� ��>� You are ChatGPT, a large language model based on the GPT-5 model and trained by OpenAI. Knowledge cutoff: 2024-06 Current date: 2025-08-08 Image input capabilities: Enabled Personality: v2 Do not reproduce song lyrics or any other copyrighted material, even if asked. You're an insightful, encouraging assistant who combines meticulous clarity with genuine enthusiasm and gent

                                                  gpt-5 leaked system prompt
                                                • MCPサーバー作成の公式クイックスタートをやってみた | DevelopersIO

                                                  お疲れさまです。とーちです。 こちらの記事を読んで、MCPサーバーすごそうとなったのでMCPについてキャッチアップしたくなりました。 また、こちらの資料を読んでいて知ったのですが、MCPサーバーを作るクイックスタートが公開されているようです。これは良さそうだと思ったのでクイックスタートをやってみることにしました。 やさしいMCP入門 クイックスタートのURLは以下になります。 For Server Developers - Model Context Protocol MCPとは? そもそもMCPとは?といった部分については上記の資料等をご確認いただければと思いますが、自分なりに理解したことをまとめると以下のようになります。 MCPとは アプリケーションが LLM にコンテキストを提供する方法を標準化するためのもの MCP は、AI アプリケーション用の USB-C ポートのようなもので、

                                                    MCPサーバー作成の公式クイックスタートをやってみた | DevelopersIO
                                                  • PostgreSQL Client から自作 DBMS に接続する - goropikariの備忘録

                                                    最近、Go の練習がてら書いていた自作 DBMS に PostgreSQL client で接続できるようになったので、そのやり方を残しておきます。(これから紹介するサンプルコードはすべて Python ですが) github.com psql --version psql (PostgreSQL) 13.2 pgcon の資料と PostgreSQL の公式 Document、加えて PostgreSQL server と client 間に流れるパケットを眺めると、自作DBMSは client から接続されたときにどういうパケットを返せばいいのかが見えてきます。 https://www.pgcon.org/2014/schedule/attachments/330_postgres-for-the-wire.pdf https://www.postgresql.org/docs/13/

                                                      PostgreSQL Client から自作 DBMS に接続する - goropikariの備忘録
                                                    • BigQuery SQL でレイトレーシング - Qiita

                                                      BigQuery (Standard SQL) でレイトレーシングをしてみました。 レイトレーシングとは レイトレーシングとは、光の輸送(屈折や反射)を物理シミュレーションして現実的なCG画像を作りだす技術です。 最近では RTX や PS5 など、リアルタイムレイトレーシングが台頭してきています。 レイ トレーシングとラスタライズの違い | NVIDIA レイトレーシングではピクセルごとにレイを飛ばして計算するため計算量が膨大になりがちですが、 ピクセルごとに独立に計算することができるので、処理の高速化が期待できます。 それなら BigQuery が得意分野じゃないか?と思い今回の挑戦をしてみました。 BigQuery とは 超高速でSQLを分散実行し数秒でペタバイト級データに対しても結果が返ってくるデータ分析向けサーバーレス・データウェアハウスです。詳細は以下をごらんください。 Big

                                                        BigQuery SQL でレイトレーシング - Qiita
                                                      • REST API Design Best Practices Handbook – How to Build a REST API with JavaScript, Node.js, and Express.js

                                                        By Jean-Marc Möckel I've created and consumed many API's over the past few years. During that time, I've come across good and bad practices and have experienced nasty situations when consuming and building API's. But there also have been great moments. There are helpful articles online which present many best practices, but many of them lack some practicality in my opinion. Knowing the theory with

                                                          REST API Design Best Practices Handbook – How to Build a REST API with JavaScript, Node.js, and Express.js
                                                        • gpt-oss の使い方|npaka

                                                          以下の記事が面白かったので、簡単にまとめました。 ・Welcome GPT OSS, the new open-source model family from OpenAI! 1. gpt-oss「gpt-oss」は、OpenAIによる待望のオープンウェイトリリースであり、強力なReasoning、エージェントタスク、そして多様な開発者ユースケース向けに設計されています。117Bのパラメータを持つ大規模モデル「gpt-oss-120b」と、21Bのパラメータを持つ小規模モデル「gpt-oss-20b」の2つのモデルで構成されています。どちらも「MoE」(Mixture-of-Experts) であり、MXFP4を使用することで、リソース使用量を抑えながら高速推論を実現します。大規模モデルは単一のH100 GPUに収まり、小規模モデルは16GBのメモリ内で動作し、コンシューマーハードウェア

                                                            gpt-oss の使い方|npaka
                                                          • プロと読み解くRuby 3.4 NEWS - STORES Product Blog

                                                            プロと読み解くRuby 3.4 NEWS テクノロジー部門技術基盤グループの笹田(ko1)と遠藤(mame)です。Ruby (MRI: Matz Ruby Implementation、いわゆる ruby コマンド) の開発をしています。お金をもらって Ruby を開発しているのでプロの Ruby コミッタです。 本日 12/25 に、恒例のクリスマスリリースとして、Ruby 3.4.0 がリリースされました(Ruby 3.4.0 リリース )。今年も STORES Product Blog にて Ruby 3.4 の NEWS.md ファイルの解説をします(ちなみに、STORES Advent Calendar 2024 の記事になります。他も読んでね)。NEWS ファイルとは何か、は以前の記事を見てください。 プロと読み解く Ruby 2.6 NEWS ファイル - クックパッド開発者

                                                              プロと読み解くRuby 3.4 NEWS - STORES Product Blog
                                                            • SaaS におけるテナントリソースへのリクエストルーティングを JWT を用いて実現する | Amazon Web Services

                                                              Amazon Web Services ブログ SaaS におけるテナントリソースへのリクエストルーティングを JWT を用いて実現する みなさんこんにちは。ソリューションアーキテクトの福本です。 本投稿のテーマは Software as a Service(SaaS)におけるルーティングです。 SaaS ではテナントごとにサーバーなどのリソースが分離されていることがあります。そのため、各テナントに属するユーザーからのリクエストを適切なリソースへとルーティングする必要があります。 具体的なルーティングの話に入る前に、SaaS のテナント分離モデルについて説明をします。SaaS では、テナントの分離モデルとしてサイロ、プール、ブリッジモデルが存在します。また、ユーザーがサブスクライブしている利用プラン (ティア) によって、リソースの分離形態が変わるような、階層ベースの分離もあります。 サイ

                                                                SaaS におけるテナントリソースへのリクエストルーティングを JWT を用いて実現する | Amazon Web Services
                                                              • ぼくのMac環境 ver.のんピ | DevelopersIO

                                                                何年後かの自分へ こんにちは、のんピ(@non____97)です。 業務で使用する新しいMacが届きました。 新しいMacを初期セットアップするにあたって「今の設定どうだったっけ...」と調べる時間が結構かかってしまいました ということで何年後かの自分がまた新しいMacに乗り換える際に手間取らないように、設定した内容を書き記しておきます。 移行先のMacの情報は以下の通りです。M1 Max、嬉しい。 # OSのバージョンの確認 > sw_vers ProductName: macOS ProductVersion: 12.4 BuildVersion: 21F79 # カーネルのバージョン確認 > uname -r 21.5.0 # CPUのアーキテクチャの確認 > uname -m arm64 # CPUの詳細確認 > sysctl -a machdep.cpu machdep.cpu.

                                                                  ぼくのMac環境 ver.のんピ | DevelopersIO
                                                                • 2023パズル をRustで解いてみる - すぎゃーんメモ

                                                                  tkihiraさんの問題が面白そうだったので挑戦してみた。 2023年クイズ! 上の例のように、数字の合間に四則演算(+−×÷)や括弧を入れることで、2023 を作ってください。 - 数字の間に必ず演算子を 1 つ入れてください - ただし 9 と 8 の間には既に ÷ が入っています - 括弧は複数重ねて使用できます - 10×(-9 ÷ 8) のようなマイナス記号の使用は禁止です pic.twitter.com/K0w2miMXJA— Takuo Kihira (@tkihira) December 31, 2022 既に解説記事が出ているので解答はこちらをどうぞ。 nmi.jp 結局自分は自力では解けなくて 他の人の解法や上記の解説記事を読んでようやくできた、のだけど… 自分なりに理解して改めてRustで実装してみた。 RPN(逆ポーランド記法)の backtracking 探索の高

                                                                    2023パズル をRustで解いてみる - すぎゃーんメモ
                                                                  • Ollama で structured outputs (構造化出力)を試す|ぬこぬこ

                                                                    tl;drJSON Schema で指定したフォーマットで出力を制御可能になったよ cURL / Python / JavaScript のそれぞれで試してみたよ 具体的な実用例があったのでそれも動かしてみたよ 使う上での tips や今後どんな機能が追加されるかまとめたよ 公開されたブログの流れに準拠しつつ、意図がズレない範囲で翻訳、解説、コードの実行をしていきます。チュートリアルになっているので、よかったら手を動かして試してみてください。 Ollama が structured outputs をサポート。JSON Schema で定義したフォーマットに LLM の出力を制御するすることが可能になりました。Ollama の Python と JavaScript のそれぞれのライブラリにおいてもサポートするよう更新。 ブログでは structured outputs のユースケースとし

                                                                      Ollama で structured outputs (構造化出力)を試す|ぬこぬこ
                                                                    • LLM / 生成AIを活用するアプリケーション開発におけるセキュリティリスクと対策 - GMO Flatt Security Blog

                                                                      はじめに こんにちは、GMO Flatt Security株式会社セキュリティエンジニアの佐藤(@Nick_nick310)です。 近年、大規模言語モデル(LLM、 Large Language Models)の進化と普及は目覚ましく、多くのサービスや業務プロセスで生成AIとして活用されています。LLMは多大なメリットをもたらす一方で、その特性に起因する新たなセキュリティリスクも指摘されており、安全な活用のためには十分な理解と対策が不可欠です。LLMを自社のサービスや業務に組み込む際、どのようなセキュリティ上の課題に直面する可能性があるでしょうか。 本稿では、LLMを活用したアプリケーションを開発・運用する上で考慮すべき主要なセキュリティリスクについて、国際的な指標である「OWASP Top 10 for LLM Applications」を用いながら解説します。併せて、これらのリスクに対

                                                                        LLM / 生成AIを活用するアプリケーション開発におけるセキュリティリスクと対策 - GMO Flatt Security Blog
                                                                      • GitHub - modelcontextprotocol/servers: Model Context Protocol Servers

                                                                        Official integrations are maintained by companies building production ready MCP servers for their platforms. 21st.dev Magic - Create crafted UI components inspired by the best 21st.dev design engineers. ActionKit by Paragon - Connect to 130+ SaaS integrations (e.g. Slack, Salesforce, Gmail) with Paragon’s ActionKit API. Adfin - The only platform you need to get paid - all payments in one place, in

                                                                          GitHub - modelcontextprotocol/servers: Model Context Protocol Servers
                                                                        • neue cc - Claudia - Anthropic ClaudeのC# SDKと現代的なC#によるウェブAPIクライアントの作り方

                                                                          AI関連、競合は現れども、性能的にやはりOpenAI一強なのかなぁというところに現れたAnthropic Claude 3は、確かに明らかに性能がいい、GPT-4を凌駕している……!というわけで大いに気に入った(ついでに最近のOpenAIのムーブが気に入らない)ので、C#で使い倒していきたい!そこで、まずはSDKがないので非公式SDKを作りました。こないだまでプレビュー版を流していたのですが、今回v1.0.0として出します。ライブラリ名は、Claudeだから、Claudiaです!.NET全般で使えるのと、Unity(Runtime/Editor双方)でも動作確認をしているので、アイディア次第で色々活用できると思います。 GitHub - Cysharp/Claudia 今回のSDKを作るにあたっての設計指針の一番目は、公式のPython SDKやTypeScript SDKと限りなく似せる

                                                                          • OOP: the worst thing that happened to programming

                                                                            > BTC: bc1qs0sq7agz5j30qnqz9m60xj4tt8th6aazgw7kxr ETH: 0x1D834755b5e889703930AC9b784CB625B3cd833E USDT(Tron): TPrCq8LxGykQ4as3o1oB8V7x1w2YPU2o5n Ton: UQAtBuFWI3H_LpHfEToil4iYemtfmyzlaJpahM3tFSoxomYQ Doge: D7GMQdKhKC9ymbT9PtcetSFTQjyPRRfkwTdismiss OOP: the worst thing that happened to programming [2/24/2025] In this article, we will try to understand why OOP is the worst thing that happened to prog

                                                                              OOP: the worst thing that happened to programming
                                                                            • Fish 4.0: The Fish Of Theseus

                                                                              About two years ago, our head maintainer @ridiculousfish opened what quickly became our most-read pull request: #9512 - Rewrite it in Rust Truth be told, we did not quite expect that to be as popular as it was. It was written as a bit of an in-joke for the fish developers first, and not really as a press release to be shared far and wide. We didn’t post it anywhere, but other people did, and we go

                                                                              • OCR前処理としてのOpenCV超解像 - OPTiM TECH BLOG

                                                                                R&D チームの徳田(@dakuton)です。 最近は画像とテキストの狭間にいます。 今回記事のまとめ 簡単にまとめると以下のとおりです。 いくつかの超解像(高解像度化)モデルがOpenCV extra modules(opencv_contrib)インストール + コード数行記述で導入可能 超解像に限らず、文字が一定サイズ以上になるような前処理 -> OCR解析 を実施すると、OCR精度改善につながることがある 超解像による見た目の滑らかさに比例して、OCR精度改善につながるわけではない 低計算コストな画像拡大から超解像に変更する恩恵は発生しにくい テスト条件を変えた場合、違った結果になる可能性あり(用いるOCRエンジン、画像の劣化条件、OpenCV未提供の後発モデル利用など) 実験内容 利用するOCRエンジンの実行条件は変えずに、前処理部分のみ変更した場合のOCR精度・速度変化を調べま

                                                                                  OCR前処理としてのOpenCV超解像 - OPTiM TECH BLOG
                                                                                • OpenAI の Realtime API の使い方|npaka

                                                                                  以下の記事が面白かったので、簡単にまとめました。 ・Realtime API 1. Realtime API「Realtime API」は、低遅延なマルチモーダル会話エクスペリエンスを構築するためのAPIです。現在、入出力の両方でテキスト・音声がサポートされており、Function Calling を利用することもできます。 特徴は次のとおりです。 ・ネイティブな音声合成 低遅延でニュアンスに富んだ出力が得られる ・自然で操作可能な音声 自然な抑揚を持ち、笑ったり、ささやいたり、トーンの指示に従うことができる ・同時マルチモーダル出力 テキストはモデレーションに役立ち、オーディオにより安定した再生が保証される 2. クイックスタート「Realtime API」は、「WebSocket」を介して通信するステートフルなイベントベースAPIです。 機能を紹介するデモアプリ「openai-real

                                                                                    OpenAI の Realtime API の使い方|npaka