タグ

関連タグで絞り込む (839)

タグの絞り込みを解除

Pythonとpythonに関するslay-tのブックマーク (837)

  • WEB屋の自分が機械学習株価予想プログラムを開発した結果

    2020/02/01 追記 [コード付き]誰も知らない関連銘柄を、機械学習を使って素早く見つける こちらに最新の結果を載せました! 気づいたんですけど、私みたいな貧乏人はショッピングモールでおしゃれなゴミをせっせと買い漁るんですが、お金持ちの人って株を買うらしいんですよね。 考えてみれば貧乏人が欲しがるものって、百均のちょっとしたものから家や車やバイクやゲーム機など、買ったらお金が減るものばかりなんです。 それに比べて、お金持ちが買うものって、株や投資用の土地や、リスクこそあるものの貧乏人が欲しがらないわりに買ったらお金が増える可能性のあるものばかりなんですよねー。 これは悔しい!休日になるたびにせっせとショッピングモールにお金を運んでゴミを買い漁ってる自分を見てお金持ちはきっと笑っているに違いない!いやお金持ちには自分のような人間は視界にすら入らないのか、これはさっそく株を買わないと!と

    WEB屋の自分が機械学習株価予想プログラムを開発した結果
  • [翻訳] Python の静的型、すごい mypy! - Qiita

    稿は 2016年10月13日 (木) に Tim Abbott 氏によって書かれた記事の翻訳です。 Static types in Python, oh my(py)! https://news.ycombinator.com/item?id=12703008 免責事項/Disclaimer 稿は 非公式 の翻訳記事です (著者の Tim Abbott 氏に翻訳を公開することの確認は取っています) 。稿の内容に関して Tim Abbott 氏と Dropbox 社は一切の責任を負いません。 誤訳などありましたら私宛に編集リクエストを送って頂けると助かります。 謝辞 @takada-at に誤訳の指摘をコメントで頂きました @shimizukawa から誤訳修正の編集リクエストを頂きました @cocoatomo は全体を通して誤訳修正、より分りやすい日語の表現にしてくれました 私の拙

    [翻訳] Python の静的型、すごい mypy! - Qiita
  • Pythonに咬まれるな : 注意すべきセキュリティリスクのリスト | POSTD

    Pythonは、習得が容易で、より大きく複雑なアプリケーションの開発にすぐに適用していけることから、コンピューティング環境に広く普及し、勢いを強めています。ただ、あまりに明瞭で親しみやすい言語なので、ソフトウェアエンジニアやシステムアドミニストレータが警戒を解いてしまい、セキュリティに重大な影響を及ぼすコーディングミスを誘発する可能性はあるかもしれません。主に、初めてPythonを使う人を対象とするこの記事では、この言語のセキュリティ関連のクセに触れます。ベテラン開発者にとってもその特異性を意識するきっかけになればと思います。 入力関数 Python 2に多数存在するビルトイン関数の中で、 input はセキュリティの面で完全に難点です。この関数をひとたび呼び出すと、標準入力から読み込んだものが即座にPythonコードとして評価されます。 $ python2 >>> input() dir

    Pythonに咬まれるな : 注意すべきセキュリティリスクのリスト | POSTD
  • メタプログラミングPython

    Use the left and right arrow keys or click the left and right edges of the page to navigate between slides. (Press 'H' or navigate to hide this message.)

    メタプログラミングPython
  • Python 3.6 の(個人的に)注目の変更点 - methaneのブログ

    Python 3.6b1 がリリースされましたね。(フライング) beta1 ということで、 3.6 に向けた新機能の追加は (provisional package を除いて) 終了です。ただし、仕様が確定したと言うわけではなくて、beta版に対するフィードバックを元に新機能を修正したり、最悪 revert して 3.7 に持ち越しにされる可能性もあります。 なお、 3.6b1 が出る前の1週間が core dev sprint があり、そこでめちゃくちゃ大量に大きめの変更が入りました。なので、常用環境には全くオススメできませんが、OSS開発者だったら .travis.yml に python: "nightly" を追加してリグレッションの発見に貢献したり(←これめっちゃ有り難いです)、それ以外の人も 3.6 を試してみて早めにフィードバックをしてもらえると、年末の 3.6 がより完成

    Python 3.6 の(個人的に)注目の変更点 - methaneのブログ
  • 機械学習のためのPython入門 クラスとメソッド編 - Beginning AI

    機械学習にどのようなPythonの知識が必要かは、Python機械学習プログラミングの監訳者福島 真太朗(ふくしま しんたろう)さんが以下のように述べられています。 Pythonの文法については、リスト、タプル、ディクショナリなどの基的なデータ構造、forループ、print関数、zip関数、enumerate関数、関数やクラスの作成方法などが理解できていれば十分です。 thinkit.co.jp そこで今回はPythonで書かれた機械学習のコードを読めるように、リスト、タプル、ディクショナリなどの基的なデータ構造、forループ、print関数、zip関数、enumerate関数、関数やクラスの作成方法について学んでいきます。 従ってこの記事は、Pythonを一度もやったことがなく、機械学習のためにPythonを学びたいという人向けです。 今回読み解くPythonコードについて 今回は題

  • Pythonパッケージ間の共起関係を可視化してみる | POSTD

    はじめに 私は、 BigQueryのGitHubデータ を使って、GitHubリポジトリにある上位3,500個のPythonパッケージの共起を抽出し、 速度ベルレ積分を使ってd3のForceレイアウト を可視化してみました。また、 python-igraph にあるアルゴリズムを使ってグラフをクラスタ化し、 http://graphistry.com/ にアップデートしました。 以下のスクリーンショットは、d3の可視化にあるNumPyのクラスタです(画像をクリックするとライブ版をご覧いただけます)。 以下は、graphistrynによって抽出されたNumPyのクラスタです(画像をクリックするとライブ版をご覧いただけます)。 グラフの特徴: 各ノードは、GitHubで見つけることのできる、それぞれのPythonパッケージです。半径は、 ノードのDataFrame セクションで計算されています

    Pythonパッケージ間の共起関係を可視化してみる | POSTD
  • Scrapy + Scrapy Cloudで快適Pythonクロール+スクレイピングライフを送る - Gunosyデータ分析ブログ

    はじめに こんにちは、データ分析部の久保 (@beatinaniwa) です。 今日は義務教育で教えても良いんじゃないかとよく思うWebクロールとスクレイピングの話です。 私自身、日頃は社内に蓄積されるニュース記事データや行動ログをSQLPythonを使って取得・分析することが多いですが、Web上にある外部データを使って分析に役立てたいというシーンはままあります。 単独のページをガリガリスクレイピングしたいときなどは、下の1年半ぐらい前の会社アドベントカレンダーに書いたような方法でやっていけば良いんですが、いくつもの階層にわかれたニュースポータルサイトやグルメポータルサイトを効率よくクロール+スクレイピングするためには、それに適したツールを使うのがすごく便利です。 qiita.com そこでPythonスクレイピングフレームワークScrapyの登場です。 Scrapy | A Fast

    Scrapy + Scrapy Cloudで快適Pythonクロール+スクレイピングライフを送る - Gunosyデータ分析ブログ
  • IronPythonの新しいリーダー

    Spring BootによるAPIバックエンド構築実践ガイド 第2版 何千人もの開発者が、InfoQのミニブック「Practical Guide to Building an API Back End with Spring Boot」から、Spring Bootを使ったREST API構築の基礎を学んだ。このでは、出版時に新しくリリースされたバージョンである Spring Boot 2 を使用している。しかし、Spring Boot3が最近リリースされ、重要な変...

    IronPythonの新しいリーダー
  • Web開発でもアプリ開発でも使える状態遷移図を自動生成するツールを作りました - Qiita

    概要 先日こちらの記事でgraphvizを使って状態遷移図を作成する方法をご紹介したのですが、これでもまだ複雑で記述量も多いのでとっつきづらいと思い、このgraphvizのソースコードを自動生成して画像を出力するコマンドラインアプリケーションを作成しました。 このアプリケーションはPyagram(ぱいあぐらむ)といい、その名前から察しがつくかと思いますがPythonを使用して開発されました。開発期間は1日でした。 このPyagramを使うことで複雑な状態遷移図を比較的簡単に作成することができるようになりますので、以下でご紹介したいと思います。 状態遷移図の描き方についてはこちらの記事を参考にしています。 出来上がりの図は以下のような感じになります。 図には幾つかのオブジェクトがあります。 図のタイトル(最上段) ビュー(二重丸) サーバサイドの処理(灰色の背景の一重丸) 画面遷移(破線の矢

    Web開発でもアプリ開発でも使える状態遷移図を自動生成するツールを作りました - Qiita
  • Python のリファクタリングでイケてないコードを別に美しいオブジェクト指向設計ではない普通のコードにする方法 - Qiita

    # ordersreport.py from collections import namedtuple Order = namedtuple("Order", "amount placed_at") class OrdersReport: def __init__(self, orders, start_date, end_date): self.orders = orders self.start_date = start_date self.end_date = end_date def total_sales_within_date_range(self): orders_within_range = [] for order in self.orders: if self.start_date <= order.placed_at <= self.end_date: orders

    Python のリファクタリングでイケてないコードを別に美しいオブジェクト指向設計ではない普通のコードにする方法 - Qiita
  • bottleで始めるWEBアプリの最初の一歩

    (2017/09 追記)http://www.denzow.me/archive/category/Bottle でまとめ直し始めました PythonのWAFの中でもとりわけ軽量・シンプルなBottleを使って アプリケーション作成の第一歩を踏み出すお手伝いをします。

    bottleで始めるWEBアプリの最初の一歩
  • Rubyが今のPythonの地位にいない理由

    _ Rubyが今のPythonの地位にいない理由 歴史のことなんぞなんも知らんけど、「技術的には今のPythonの地位はRubyでもよかったのに、そうならなかった」のが何故か、その理由を書いてみよう。僕はRuby歴史なんて知らないし、以下の文章は全部、まるで見てきたかのように書いてますが、適当に書いたくせに何故か断言口調になっている怪文書の類いです。 https://twitter.com/mametter/status/741950239662170112 まめさんの書いた理由リストはどれも関係ない。いやカスってるけど。難しいというのも関係ない。 僕がRubyを知ったころ…最初に書いた通りRuby歴史なんて知らないので、別に早くもないわけだけど…Rubyというのは全く使われていない言語だった。どっかの好き者がPerlの替わりに単純な処理に使って、「ウフ、美しくかけた、グフッ」とかつぶ

  • 【Python】RプログラマーのためのPython入門 - 歩いたら休め

    会社に優秀な後輩が入ってきて、優秀な先輩(私でゎない)の助けを得ながら、立派な分析者・Rプログラマーとして成長しつつあります。 しかし、R言語だけで全ての作業が完結できるわけではありません。手元でデータを加工・分析するための環境としては素晴らしいのですが、大規模な計算では遅かったり(パフォーマンスを上げるにしても工夫が必要だったり)、クラスベースのオブジェクト指向が無いため、プログラムが大きくなるにつれて関数の整理が難しかったり、言語としてつらい面も多いです。 また、データ分析して作ったモデルをサービスに乗せる際には別の言語を使う必要があると思います。一応、shinyというWEBアプリを作るためのライブラリもあるものの、「社外向けのサービスでバリバリ使ってるぜ!」という話は聞いたことがありません。 というわけで、R言語メインのプログラマーが、一歩進んでスクリプト言語(Python)が抵抗な

    【Python】RプログラマーのためのPython入門 - 歩いたら休め
  • C言語アプリケーションにPyPyを埋め込む | POSTD

    from my_library import ffi, lib @ffi.def_extern() def compute(first, second): """ Compute the absolute distance between two numbers. """ return abs(first - second) この実装のスニペットには、適切に埋め込むための特別な仕様が含まれています。1行目で、ダイナミックライブラリから ffi と lib オブジェクトをインポートします。これによって、cffiが提供する関数へアクセスしての実装が可能になり、メモリの割り当てなど、より複雑なタスクに利用できるようになります。 my_library という名前と、ダイナミックライブラリのどの名前に対応するかは下記に定義しました。 次にスニペットを見て気づくのは、 @ffi.def_extern

    C言語アプリケーションにPyPyを埋め込む | POSTD
  • ジェダイ流・Pythonの内包表記 | POSTD

    醜いより美しい方がいい。暗示するより明示する方がいい。 Pythonの禅 より 私はよく、ドロイドやジェダイ、惑星、ライトセーバー、スターファイターなどのコレクショングッズを題材にしてプログラムを書きます。Pythonでプログラミングをする際は大抵、これらをリストやセット、辞書として表現するわけです。私は日頃からコレクショングッズをさまざまな形に変身させたいと思っています。そして、その願望を叶えてくれるのが、内包表記という強力な記法です。内包表記は私がさまざまな場面で使っている手法であり、Pythonを使い続けている理由の1つでもあります。では、いくつか例と共に、内包表記がいかに便利かを説明していきましょう。 以下の例に出てくる処理はどれも、種類豊富なPythonの標準ライブラリがあれば実装できます。その中には、より簡潔で効率の良い処理に改善できるものもあるでしょう。とはいえ、私は標準ライ

    ジェダイ流・Pythonの内包表記 | POSTD
  • 画像処理入門講座 : OpenCVとPythonで始める画像処理 | POSTD

    この記事を書くに至ったきっかけ Recruse Centerでは、私は、画像処理の勉強に時間を費やしていました。独学をし始めた頃は、何をするものなのか全く理解しておらず、ただ、文字や輪郭、模様などを識別するのに役立ち、これらで面白いことができる、ということくらいの知識しかありませんでした。 私の情報源は、主にWikipediaや書籍、公開されている大学の講義ノートです。これらの資料に慣れ親しんでくるにつれ、画像処理の世界における基礎を伝えられる「入門向け画像処理」を望むようになりました。 これが、この記事を書こうと思ったきっかけです。 前提条件 この記事は、Pythonが扱えるということを前提に書いています。その他の事前知識は必要ありませんが、NumPyや行列計算に慣れていると理解しやすいでしょう。 初めに 使用するのは、PythonOpenCVPython 2.7 ^(1) 、iPy

    画像処理入門講座 : OpenCVとPythonで始める画像処理 | POSTD
  • PythonのNumPyとFakerパッケージを使ってダミーデータを作成する - Qiita

    #なぜダミーデータにこだわるのか# 機械学習などのライブラリやツールを使う際に扱うデータはとても重要になります。データがなければ、デモを行うこともできません。実データを使うことが一番ですが、なかなか身近に求めているタイプの実データがないケースも多いと思います。最近は分析に使いやすい実データが一部の企業から公開されていますが、研究目的の使用に限られているなど、使用条件を満たせられないこともあります。 データがなければ自分で作ればいいということで、ダミーデータを自由に作れると便利です。 ダミーデータを作るにあたっては、その目的によって作り方に工夫が必要です。大きく分けると次の二つになると思います。 パフォーマンス測定としてのダミーデータ データ分析としてのダミーデータ パフォーマンス測定においては、全データ読み込み速度測定などシンプルなものであれば、データ量さえ合わせれば用件を満たすケースも多

    PythonのNumPyとFakerパッケージを使ってダミーデータを作成する - Qiita
  • 初心者におすすめ!Python3を習得できる4つの学習法と11のコンテンツ - paiza開発日誌

    Photo by Kathleen Franklin こんにちは。谷口です。 先日、プログラミング言語別エンジニアの平均年収ランキングにて、Pythonが651万円で1位になったことが話題になりました。 www.itmedia.co.jp Python機械学習人工知能分野、計算系の研究に適したライブラリが非常に多く、各分野の研究の盛り上がりとともにニーズが増えています。また、もちろんそういった研究分野だけでなくYouTubeやInstagram、Dropbox等といったメジャーなWebサービスでも多く使用されています。 Pythonは他のプログラミング言語に比べても、構文がシンプルで、一つの処理について誰がコードを書いても同じ書き方になりやすいという特徴があります。そのおかげで初心者でも比較的コードが書きやすく、また他人が書いたコードを読む際も読みやすい言語となっています。プログラミン

    初心者におすすめ!Python3を習得できる4つの学習法と11のコンテンツ - paiza開発日誌
  • PythonでPandasのPlot機能を使えばデータ加工からグラフ作成までマジでシームレス - Qiita

    Pandasのグラフ描画機能 この記事ではPandasのPlot機能について扱います。 Pandasはデータの加工・集計のためのツールとしてその有用性が広く知られていますが、同時に優れた可視化機能を備えているということは、意外にあまり知られていません。 この機能は Pandas.DataFrame.plot() もしくは Pandas Plot と呼ばれるものです。 Pandas Plotを使いこなすことが出来るようになれば、 データの読み込み、保持 データの加工 データの集計 データの可視化 というデータ分析の一連のプロセスを全てPandasで完結させることが出来る、つまり分析の「揺りかごから墓場まで」を実現することが出来ます。 Pandasのプロット以外の機能について この記事ではPandasのデータハンドリングなどに関わる機能は説明しません。 そちらにも興味がある方は下記の記事などを

    PythonでPandasのPlot機能を使えばデータ加工からグラフ作成までマジでシームレス - Qiita