タグ

algorithmとsearchに関するt_moriのブックマーク (9)

  • 検索エンジンはいかにして動くのか? 記事一覧 | gihyo.jp

    運営元のロゴ Copyright © 2007-2025 All Rights Reserved by Gijutsu-Hyoron Co., Ltd. ページ内容の全部あるいは一部を無断で利用することを禁止します⁠。個別にライセンスが設定されている記事等はそのライセンスに従います。

    検索エンジンはいかにして動くのか? 記事一覧 | gihyo.jp
  • 検索エンジンを実装 (1)転置インデックス作成

    今回はN-gramでテキストを分解します。N-gram法とは対象の文字列を一定のN文字単位で分解し、それの出現頻度を求める方法です。これによって、検索エンジンに使われる転置インデックスを作成したいと思います。転置インデックスの作成方法にはN-gramの他に形態素解析があります。両者の性能の長短は全文検索 – Wikipediaに詳しく載っています。 Javaソースコード(Make2gram.java) さて、まずは文字列を2単語に切り分けるプログラムを作成しました。データ構造は単純にArrayListで、出現頻度も求めていません。 import java.io.*; import java.util.*; /** * N-gram法 */ public class Make2gram { public static void main(String[] args) { final shor

    検索エンジンを実装 (1)転置インデックス作成
  • Google WSDM'09講演翻訳:大規模な情報検索システム構築における課題(1) - llameradaの日記

    GoogleのFellowであるJeffrey Dean氏のWSDM'09における講演"Challenges in Building Large-Scale Information Retrieval Systems"のスライドを翻訳してみました。Googleの検索システムの10年間の進化の軌跡が紹介されており、興味深い話が満載です。個人的にはディスクの外周部と内周部を使い分けている話がツボでした。なお、イタリック体で一部解説・感想をいれています。翻訳は素人なので詳しくは元の資料を参照してください。 スライドの入手元:Jeffrey Dean – Google AI 検索システムに取り組む理由 チャレンジングなサイエンスとエンジリアニングのブレンド 多くの魅力的な未解決な問題が存在する。 CS(コンピュータサイエンス)の多数の領域にまたがる。 アーキテクチャ、分散システム、アルゴリズム、圧

    Google WSDM'09講演翻訳:大規模な情報検索システム構築における課題(1) - llameradaの日記
  • 転置インデックスを実装しよう - mixi engineer blog

    相対性理論のボーカルが頭から離れないmikioです。熱いわっふるの声に応えて今回はTokyo Cabinetのテーブルデータベースにおける検索機能の実装について語ってみたいと思います。とても長いのですが、最後まで読んだあかつきには、自分でも全文検索エンジンを作れると思っていただければ嬉しいです。 デモ モチベーションをあげていただくために、100行のソースコードで検索UIのデモを作ってみました。Java 6の日語文書を対象としているので、「stringbuffer」とか「コンパイル」とか「倍精度浮動小数」とかそれっぽい用語で検索してみてください。 インデックスがちゃんとできていれば、たった100行で某検索エンジン風味の検索機能をあなたのデータを対象にして動かすことができます。ソースコードはこちら(テンプレートはこちら)です。 でも、今回はUIの話ではないのです。ものすごく地味に、全文検索

    転置インデックスを実装しよう - mixi engineer blog
  • 文字列探索スターターキット - シリコンの谷のゾンビ

    最近重点的に勉強しているので,これまで集めた教科書情報,資料等へのリンクをまとめてみる.紹介している教科書はほとんど読んでいないので妄言注意. この他にお薦め教科書,勉強法があればぜひ教えてください. 文字列探索は検索対象テキストの中から転置インデクスのような外部データ構造を利用せずに目的の文字列を探索する課題です.文字列探索,文字列照合,パターンマッチなどとも呼ばれています(一番オーソドックスな呼び方はなんでしょう?) 教科書 和書で文字列探索だけを取り扱っているを見かけたことがない.アルゴリズムの探索の章にKMP法,BM法が紹介されているだけのケースが多い.注意してみるとAC法を扱っているが意外と少ないことに気がつく... (文字列探索でよい和書の情報募集中) 追記 (2009-04-02) Thanks to cubicdaiyaさん! 情報検索アルゴリズムにKMP法, BM法

    文字列探索スターターキット - シリコンの谷のゾンビ
  • [を] 転置インデックスによる検索システムを作ってみよう!

    転置インデックスによる検索システムを作ってみよう! 2007-11-26-5 [Algorithm][Programming] 転置インデックス[2007-06-17-6]による検索システムの実装は パフォーマンスを無視すれば意外と簡単です。 それを示すために Perl で簡単な検索システムを作ってみました。 検索方式は転置インデックス(Inverted Index)、 ランキングには TF-IDF[2005-10-12-1] を用いました。 検索対象ファイルは一行一記事で以下のフォーマットとします。 [記事ID][SPC][記事内容]\n 記事IDは数字、記事内容は UTF-8 の文字で構成されるものとします。 以下のようなサンプル test.txt を用意しました。 1 これはペンです 2 最近はどうですか? 3 ペンギン大好き 4 こんにちは。いかがおすごしですか? 5 ここ最近疲れ

    [を] 転置インデックスによる検索システムを作ってみよう!
  • 404 Blog Not Found:アルゴリズム百選 - 二分探索(binary search)

    2007年12月04日08:30 カテゴリアルゴリズム百選Math アルゴリズム百選 - 二分探索(binary search) 今回は二分探索を取り上げます。 検索:コンピューターの最もよくある利用法 「二分探索って何?」「ググレカス」と言われないためにこの記事は存在するのですが、Webの検索に限らず、「目的のデータを見つけて取り出す」というのは、およそコンピューターの利用法で最もポピュラーなものです。 配列:コンピューターがデータを扱う根的な方法 そのデータはコンピューターのなかでどう置かれているかというと、非常に単純です。デジタル化されたデータ=数値が一定間隔で並んでいるだけです。こういうデータ構造を、配列(array)といい、この数値一個一個のことを要素(element)と言います。 現代のコンピューターでは、最小要素はバイト(byte)と呼ばれています。このバイトの中には0と1

    404 Blog Not Found:アルゴリズム百選 - 二分探索(binary search)
  • Aho Corasick 法 - naoyaのはてなダイアリー

    適当な単語群を含む辞書があったとします。「京都の高倉二条に美味しいつけ麺のお店がある」*1という文章が入力として与えられたとき、この文章中に含まれる辞書中のキーワードを抽出したい、ということがあります。例えば辞書に「京都」「高倉二条」「つけ麺」「店」という単語が含まれていた場合には、これらの単語(と出現位置)が入力に対しての出力になります。 この類の処理は、任意の開始位置から部分一致する辞書中のキーワードをすべて取り出す処理、ということで「共通接頭辞検索 (Common Prefix Search)」などと呼ばれるそうです。形態素解析Wikipediaはてなキーワードのキーワードリンク処理などが代表的な応用例です。 Aho Corasick 法 任意のテキストから辞書に含まれるキーワードをすべて抽出するという処理の実現方法は色々とあります。Aho Corasick 法はその方法のひと

    Aho Corasick 法 - naoyaのはてなダイアリー
  • 連載:検索エンジンを作る|gihyo.jp … 技術評論社

    運営元のロゴ Copyright © 2007-2025 All Rights Reserved by Gijutsu-Hyoron Co., Ltd. ページ内容の全部あるいは一部を無断で利用することを禁止します⁠。個別にライセンスが設定されている記事等はそのライセンスに従います。

    連載:検索エンジンを作る|gihyo.jp … 技術評論社
  • 1