主成分分析とは似て非なる手法として「因子分析」(Factor Analysis) があります。 主成分分析(PCA)では、説明変数に対して重み行列(固有ベクトル)a を線形結合した「主成分」 yPC1を合成しました。ここで、主成分は、説明変数と同じ数だけ定義します。 yPC1 = a1,1 x1 + a1,2 x2 + a1,3 x3 + a1,4 x4 + a1,5 + ... 因子分析では、説明変数(観測変数)x が「因子」(factor) という潜在変数から合成されるという考え方に基づき、その因子得点 f と重み行列(因子負荷) w 、そして独自因子 e を特定します(主成分分析に独自因子という考え方はありません)。 x1 = w1,1 f1 + w1,2 f2 + e1 x2 = w2,1 f1 + w2,2 f2 + e2 x3 = w3,1 f1 + w3,2 f2 + e3