こんにちは。 コンピュータビジョン(『ロボットの眼』開発)が専門の”はやぶさ”@Cpp_Learningです。 最近は、PythonとOpenCVを使った画像処理にハマっています! OpenCV便利ですよね~画像処理に関する知識があまりなくても、関数をレゴブロックのように繋げるだけで目的の処理ができますからね~ ただ、OpenCVが便利すぎるせいで『画像処理の基礎』を学ぶ機会を失っている人が多いような気がしています。。
こんにちは。研究開発部の @vanhuyz です。機械学習・自然言語処理を中心に研究開発しています。 今回は機械学習を活用してユーザーからのご意見を 81 のカテゴリーに自動分類し、ユーザーサポートスタッフによる手動分類の工数を半分にできた話を紹介したいと思います。 背景 クックパッドは現在約 5,500 万人の国内月間ユーザーがあり、日々ユーザーからたくさんのご意見やご要望を頂いています。創業してからユーザーの声を大事に扱う文化があり、どのご意見も一度目を通すようにユーザーサポートスタッフが努力しています。ご意見はスタッフによってさらに分類され、必要に応じてディレクターやエンジニアに振り分けられています。 例えば、こんな感じのご意見が来ています。「このレシピは簡単なので、子供とやってみました。楽しかったです」や「機種変更して、ログイン出来ません」や「もっと具体的な内容でも検索できるように
国際学会で早押しクイズAIコンペティションが併催された。ここで優勝したAIについて、Studio Ousia CTO 山田育矢氏がどのような仕組みになっているか解説した。質問文からどのように解答候補を編み出し、何をチェックし、最終的に回答すると判断するまで4つのコンポーネントを組み合わせている。 AIに勝ち、人間のクイズ王にも勝った早押しクイズAIの実力 データサイエンティストが集うコミュニティ「PyData」ではデータ分析に関わるユーザーや開発者たちがツールやアイデアを共有している。コミュニティは世界各地に広がっており、日本では東京、大阪、札幌、沖縄の4か所。定期的に勉強会を開催しており、毎回著名なデータサイエンティストやデータ分析の専門家が登壇している。 4月25日には東京版コミュニティとなる「PyData.Tokyo」が18回目のミートアップを開催した。テーマは「データ分析コンペティ
5月30日、都内でIT・Webエンジニア向け転職サイトのGeekOutが画像認識をテーマにしたイベント「GeekOutナイト」を開催した。今回、取材の機会を得たので、きゅうり農家である小池誠氏の話を紹介する。 “慣れ”が必要なきゅうりの仕分け作業 小池氏は静岡県湖西市できゅうりを栽培しており、年間出荷量は60トンを超える。家業であるきゅうり農家を継ぐ前はエンジニアとして腕を鳴らしていた。 同氏は「近年、農業は機械化されているが、まだまだ手作業に頼ることが多い。特に、きゅうりやピーマン、トマトをはじめとした果菜類は機械化および大規模化が難しいため作業時間が長い」と指摘する。 きゅうり農家の小池誠氏 農林水産省によると、きゅうり栽培における作業別労働時間は収穫作業が全体の39.8%、次いで仕分けなどの出荷作業が22.1%を占める。同氏は、長さ・太さ・曲がり具合・色・ツヤを人間が目視で確認し、9
(注:2017/04/08、いただいたフィードバックを元に翻訳を修正いたしました。 @liaoyuanw ) この記事は、私の著書 『Deep Learning with Python(Pythonを使ったディープラーニング)』 (Manning Publications刊)の第9章2部を編集したものです。現状のディープラーニングの限界とその将来に関する2つのシリーズ記事の一部です。 既にディープラーニングに深く親しんでいる人を対象にしています(例:著書の1章から8章を読んだ人)。読者に相当の予備知識があるものと想定して書かれたものです。 ディープラーニング: 幾何学的観察 ディープラーニングに関して何より驚かされるのは、そのシンプルさです。10年前は、機械認識の問題において、勾配降下法で訓練したシンプルなパラメトリックモデルを使い、これほど見事な結果に到達するなど誰も想像しませんでした。
AI(人工知能)が、人間の仕事を代替する。 近年、そんなフレーズが各種メディアに登場するようになりました。今後10~20年で、今存在しているさまざまな仕事は自動化されると考えられています。そして、その波は“ゲーム開発”にも訪れているのです。 DeNAでは、オセロとトレーディングカードゲームの要素を組み合わせた対戦ゲームアプリ『逆転オセロニア』のキャラクターバランス調整を、AIによってサポートすべく研究を続けています。今回は、本プロジェクトを推進し研究・開発に“フルスイング”してきたエンジニアであるAIシステム部AI研究開発グループの奥村エルネスト純、甲野佑、田中一樹に、彼らが成し遂げようとしている未来について聞きました。 「世界的に見ても前例がない領域」に挑むやりがい ――なぜ、オセロニアのバランス調整にAIを導入しようとしているのでしょうか? 奥村:ゲームのバランス調整をより効率よく正確
Sentence from Pride and Prejudice by Jane Austen. Interpolated by the authors. Inspired by experiments done by the novelist Robin Sloan Such generative interfaces provide a kind of cartography of generative models, ways for humans to explore and make meaning using those models. We saw earlier that the font model automatically infers relatively deep principles about font design, and makes them avai
AI(人工知能)に関わる技術、なかでもディープラーニングが急速に発達し、社会のさまざまな領域で実際に利用されるようになりました。その背景のひとつには、AI分野での研究開発に多大な投資を行っている大手IT企業が、その成果の一部をオープンソースとして公開し、世界中のエンジニアが自由に使えるようになったことがあります。 こうしたオープンソースのAI関連ライブラリには、Googleの「TensorFlow」やFacebookの「Torch」といった海外のIT企業のものだけでなく、国内にもPreferred Networksの「Chainer」やソニーの「Neural Network Libraries」などがあります。最近では、関連した情報も数多く手に入るようになりました。 また、これらのライブラリの多くには親切なチュートリアルも用意されており、AIの開発経験がないエンジニアでもさほど手間を掛ける
最近、外国で講演する機会が多い。2011年にドイツ留学を終えて以降、いろいろと引き受けているうちに招かれることが増え、今年の予定はすでに5回(ミュンヘン、ジュネーブ、メルボルン、北京、ソウル)を超えている。 AIと知財 テーマは様々だが、最近多いのがAI(人工知能)をめぐる知財問題。2016年11月にはソウルで開かれたSeoul Copyright Forumでこれについて話したのをはじめ、また2017年8月にはメルボルンで開かれた国際人工知能会議(IJCAI)でもこれを取り上げた。このテーマが外国で注目されやすいのは、内閣府・知的財産戦略本部における検討など、日本で盛んな議論が展開されていることにもよるが、実はもう一つ大きな理由がある。それが、著作権法47条の7だ。 著作権法47条の7という規定 この規定――外国だと“Article 47septies”となって言いにくいのだが――は、コ
はじめに 機械学習に使われる主要な数学 線形代数 最も重要な理由 線形代数って何なんだ? 線形代数を学ぶモチベーション 線形代数を学んで、できるようになること 補足 微分積分学は? 確率統計は? 確率・統計を考えていくための初歩を確認したい人は以下の記事へ はじめに この記事は、私が機械学習を学んできて感じた、数学の役割をまとめたものです。記事を書く上で特に意識したのは、ある数学が機械学習においてどのように活躍し、どのような旨味をもたらしたのか、そして、そこから数学を学ぶ意義を改めて抑えることです。 数学の解説をすることが目的ではないため、直接的に数学の疑問を晴らすということにはなりませんが、 これから機械学習を学んで行こうという場合に、数学がどのように役立ちうるのか、その全体像を予め把握しておくことに使っていただけると幸いです。 機械学習に使われる主要な数学 多くの書籍、多くの記事が世の
ここ最近、Google翻訳がリニューアルされ、性能が向上したという話が流れてきたので、さっそく試してみた。 ぼくが真っ先に試したのは、「母は、父が誕生日を忘れたので、怒っている。」だ。 なぜこの文が気にかかっていたかは後述する。 結果は次の通り。 "My mother is angry because my father forgot her birthday." すばらしい。 では、「母は、父が鞄を忘れたので、怒っている。」はどうだろうか。 "My mother is angry because my father forgot his bag." 完璧だ! 「誕生日を忘れた」の場合は「母の誕生日」と解釈し、「鞄を忘れた」の場合は「父の鞄」と解釈する。 これこそ、利用者が翻訳に求めるものじゃないだろうか。 しかし、ここまでだった。 次にぼくは、「父」と「母」を入れ替え、「父は、母が誕生日
Update: This article is part of a series. Check out the full series: Part 1, Part 2, Part 3, Part 4, Part 5, Part 6, Part 7 and Part 8! You can also read this article in Italiano, Español, Français, Türkçe, Русский, 한국어 Português, فارسی, Tiếng Việt or 普通话. Giant update: I’ve written a new book based on these articles! It not only expands and updates all my articles, but it has tons of brand new co
こんにちは。検索編成部&研究開発チームの原島です。 クックパッドのレシピには、内部で、様々な情報が付与されています。例えば、こちらの「母直伝♪うちの茹でない塩豚」というレシピには「肉料理」という情報が付与されています。これらの情報は、クックパッドの様々なプロダクトで利用されています。 レシピに情報を付与する方法は沢山ありますが、その一つに機械学習があります。クックパッドでは、レシピが肉料理か否か、魚料理か否か、...という分類を行うことで、「肉料理」や「魚料理」などの情報をレシピに付与しています。 今日は、分類をどのように実現しているか、その裏側を紹介します。 ■ 実装フェーズ まず、分類器を実装する際に気をつけたことを紹介します。 モデルを決定する 分類を行うには、そのための機械学習のモデルを決定する必要があります。クックパッドでは、十分な精度が出るだけでなく、リファレンスが多いという点
「自ら学習するマシンを生み出すことには、マイクロソフト10社分の価値がある」。 米マイクロソフトの創業者ビル・ゲイツ氏は今から10年前の2004年2月にこう語った。 その時は来た。 米グーグルや米アップル、米フェイスブックといった先進IT企業は今、コンピュータがデータの中から知識やルールを自動的に獲得する「機械学習」の技術を駆使し、様々なイノベーションを生み出し始めている。 これらは来たる機械学習革命の、ほんの序章に過ぎない。 機械学習の本質は、知性を実現する「アルゴリズム」を人間の行動パターンから自動生成することにある。 この事実が持つ意味は、果てしなく大きい。 今後、実社会における様々な領域で「人間の頭脳を持つプログラム」が登場する一方、データの中から知識やルールを見つけ出したり、プログラムを開発したりするデータサイエンティストやプログラマーの仕事が、機械に置き換えられてしまうからだ。
午前中は機械学習の基礎勉強会の最終回。1冊全部通読できてよかった。 昼から研究室配属の説明会。誰がうちの研究室を希望してくれるかな? 連続して学部3年生のプロジェクト実習の最終発表会。学生たちが各自チームで半年間研究した成果を発表してくれた。トップバッターの女の子4人組チームがとてもプレゼンがうまく、出した数値も段違いによく、他のチームのほぼダブルスコアで、最優秀発表賞を受賞していた。ポスター発表を聞くと、ポスターにはアルゴリズムが前面に書かれていたが、質問してみたところアルゴリズムが問題なのではなく、驚くべき手法によってその精度が達成されていた。 タスクは顔画像認識で、人物の映る画像が与えられたとき、それが誰か当てるという課題。ただ、この実験は設定が特殊で、画像に手を加えてもいいことになっていた。そこで、彼女たちは数千枚の写真画像からなる訓練事例とテスト事例の両方で、まず顔の中心点を決め
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く