タグ

ブックマーク / machine-learning.hatenablog.com (2)

  • ベイズ学習の勉強に参考になる資料 - 作って遊ぶ機械学習。

    おつかれさまです.今回はタイトルの通り,ベイズ学習を勉強する上で参考になる教科書やウェブの資料,論文等を紹介したいと思います. ベイズ学習は確率推論に基づいた機械学習アルゴリズムの構築論です.ベイズ学習を使えば,あらゆる形式のデータに対して,未観測値の予測や隠れた構造を発見するための統一的なアプローチをとることができるため,特に現代の機械学習アルゴリズムを深く理解し使いこなすためには必須の方法論になっています. 1, ベイズ学習の位置づけ まず,データサイエンスにおける他の方法論と,ベイズ学習の位置づけを簡単に俯瞰したいと思います. 僕の知る限り,ベイズ学習は1990年代ごろから登場してきた機械学習の方法論で,既存の学習アルゴリズムを確率モデルによって構築し,学習や予測の計算をすべて確率推論(条件付き分布と周辺分布の計算)で解決してしまおうという試みによってはじまりました.これにより,従来

    ベイズ学習の勉強に参考になる資料 - 作って遊ぶ機械学習。
  • データに欠損がある場合の教師あり学習 - 作って遊ぶ機械学習。

    おはようございます. 今回は教師あり学習モデルを題材に,入力データが欠損している場合のベイズ流の対処法を解説します.ベイズモデルというと,たいていの場合は事前分布の設定の仕方云々だとか,過学習を抑制できるだとかに議論が注目されがちですが,個人的には,パラメータや潜在変数を推論することとまったく同じ枠組みで欠損値も同時に推論できることが,実用上非常に便利なベイズの特性だと思っています. データの欠損部分の取扱い データに欠損部分が存在することはよくあります.センサーデータを解析する際は,ネットワークの状況やデバイスの不具合によってデータの一部が欠けた状態で上がってくることがあります.スマホから複数種類のデータを集めるといった状況を考えてみると,例えば加速度センサーの値は継続的に取得できたとしていても,GPSの位置情報はほとんど上がってこないといった場合もあるかと思います.また,何かしらのユー

    データに欠損がある場合の教師あり学習 - 作って遊ぶ機械学習。
  • 1