エントリーの編集
エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
Kaggleゼミ成果報告(Rossmann編) | AI tech studio
記事へのコメント0件
- 注目コメント
- 新着コメント
このエントリーにコメントしてみましょう。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
Kaggleゼミ成果報告(Rossmann編) | AI tech studio
評価尺度 このコンペでは予測したSalseの評価尺度として、 RMSPE という以下の計算式が用いられています... 評価尺度 このコンペでは予測したSalseの評価尺度として、 RMSPE という以下の計算式が用いられています。 RMSPEは、実際の Sales と、予測した Sales の誤差の割合をベースに算出される値で、0 に近く小さいほど良いというものです。仮に全ての店舗の全ての日の Sales の予測値が実際の Sales と一致していれば RMSPE = 0 となります。 売上予測結果の一例 コンペのイメージを湧き易くするために、実際に予測モデルで予測した売上の結果についてお見せします。下図は2015年6月までのデータを使って、2015年7月の売上を予測したもの(緑線)と実際の売上(橙線)を3店舗分可視化したものです。なかなか良く売上の予測ができていることが見て取れます。以降では、この予測モデルの構築について説明していきます。 Rossmann Store Sales での取り組み 情報収集