エントリーの編集
エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
http://nakaikemi.com/clusterexp.htm
記事へのコメント0件
- 注目コメント
- 新着コメント
このエントリーにコメントしてみましょう。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
http://nakaikemi.com/clusterexp.htm
階層的クラスター分析(Hiearchical Cluster Analysis) その2 ウォード法とは 色々な問題にクラスター... 階層的クラスター分析(Hiearchical Cluster Analysis) その2 ウォード法とは 色々な問題にクラスター分析を用いて解析してみると、比較的安定した解が得られる手法があります。それが、ウォード(Ward)法です。ウォード法は、二つのクラスターを結合する際に、「群内平方和の増加量」が最小になる二つのクラスターを一つにまとめるという手法です。 1.ウォード法の定式化 これを、まず数式で追いかけてみましょう。 いま、 をクラスター{ A } に属する i 番目の対象(クラスター{ A } 内に n個ある)の第 k変数(全部でp個ある)についての値とすればクラスター{ A } 内の平方和は