エントリーの編集
エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
アップルがLLMのようにスケーラブルな大規模自己回帰画像モデルを開発
記事へのコメント0件
- 注目コメント
- 新着コメント
このエントリーにコメントしてみましょう。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
アップルがLLMのようにスケーラブルな大規模自己回帰画像モデルを開発
3つの要点 ✔️ LLMの画像版として、自己回帰学習型の画像モデルAIMを提案 ✔️ 事前学習した画像特徴量の質は... 3つの要点 ✔️ LLMの画像版として、自己回帰学習型の画像モデルAIMを提案 ✔️ 事前学習した画像特徴量の質はモデル規模とデータの質に従い向上し、下流タスクの性能は事前学習性能に従い向上 ✔️ 20億枚の画像でAIMの70億パラメータを事前学習しImageNet-1kタスクで精度84%を達成に加え、性能飽和の兆しなし Scalable Pre-training of Large Autoregressive Image Models written by Alaaeldin El-Nouby, Michal Klein, Shuangfei Zhai, Miguel Angel Bautista, Alexander Toshev, Vaishaal Shankar, Joshua M Susskind, Armand Joulin (Submitted on 16 Jan 2024)