エントリーの編集
エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
記事へのコメント1件
- 注目コメント
- 新着コメント
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
数学の簡単な問題を難しく解く
問い:xを実数としpを有理数としたとき、x+pが無理数であるならば、xが無理数であることを示せ。 簡単に... 問い:xを実数としpを有理数としたとき、x+pが無理数であるならば、xが無理数であることを示せ。 簡単に解くには、xを有理数として、x+pが有理数であることを示せばいいだけ。有理数は四則演算に閉じているから問題なし。 ならばこれをほかの方法でとくことができるのか?考えてみてください。一応自分で考えたのは下のほうに流れだけを書いておきます。 自分の回答(欠陥あり) xを二次無理数を仮定し、xを循環連分数の形に直す。その場合においてx+pはある一定のところからまた循環連分数となり、循環連分数が無理数であることを証明すればよい。この場合だと二次無理数にしか適応できないのが問題。だとえばpiとかこの方法だと示すことができない。 なぜならpiは循環連分数でないからだ。この場合はどうすればいいのだろうか。xが超越数であることを仮定して解かなければならないのか。解き方がわからん。
2008/08/24 リンク