エントリーの編集
エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
大規模並列処理:PythonとSparkの甘酸っぱい関係~PyData.Tokyo Meetup #3イベントレポート
記事へのコメント0件
- 注目コメント
- 新着コメント
このエントリーにコメントしてみましょう。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
大規模並列処理:PythonとSparkの甘酸っぱい関係~PyData.Tokyo Meetup #3イベントレポート
ロゴステッカーの作成計画も進行中です。近々イベント会場でお配りできるかも知れません。 チュートリア... ロゴステッカーの作成計画も進行中です。近々イベント会場でお配りできるかも知れません。 チュートリアルおよび次回勉強会のお知らせ この度PyData.Tokyo初の試みとして、初心者向けのチュートリアルを3月7日(土曜日)に行います。また、次回勉強会はデータ解析に関する「高速化」をテーマにし、4月3日(金曜日)に開催します。詳細は記事の最後をご覧下さい。 Sparkによる分散処理入門 PyData.Tokyo オーガナイザーのシバタアキラ(@madyagi)です。 ビッグデータを処理するための基盤としてHadoopは既にデファクトスタンダードになりつつあります。一方で、データ処理に対するさらなる高速化と安定化に向けて、新しい技術が日々生まれており、様々な技術が競争し、淘汰されています。そんな中、Apache Spark(以下Spark)は、新しい分析基盤として昨年あたりから急激にユーザーを増