エントリーの編集

エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
たった3人で運用するドコモを支える機械学習基盤の作り方 ー Kubernates × Airflow × DataRobot を使ったMLOpsパイプライン ー - ENGINEERING BLOG ドコモ開発者ブログ
記事へのコメント1件
- 注目コメント
- 新着コメント
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています

- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
たった3人で運用するドコモを支える機械学習基盤の作り方 ー Kubernates × Airflow × DataRobot を使ったMLOpsパイプライン ー - ENGINEERING BLOG ドコモ開発者ブログ
TL;DR 自己紹介・モチベーション 処理の再現性の担保・デプロイの迅速化 実現したかったこと 1. コード... TL;DR 自己紹介・モチベーション 処理の再現性の担保・デプロイの迅速化 実現したかったこと 1. コードの再現性を担保する 2. 簡単に機械学習タスクの実行パイプラインをかけるようにする 3. ノートブックファイルを、そのままの形でパイプラインに組み込めるようにする スケーラビリティの確保 DataRobotについて スコアリングコード機能 実装上のポイント 工夫点 はまったポイント 所感 あとがき TL;DR 機械学習基盤をKubernates上で構成することで、機械学習にかかわる一連の処理の再現性を担保できるようになった。 AutoML製品(DataRobot)の機能をKubernates(以下k8s)上で実行させることで、バッチ予測を並行実行し、大幅に高速化することができた。 データサイエンティストが自分自身で容易に機械学習パイプラインの定義・デプロイができるようになった。 自己
2022/12/21 リンク