エントリーの編集
エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
Scikit-learn でロジスティック回帰(クラス分類編) - Qiita
記事へのコメント0件
- 注目コメント
- 新着コメント
このエントリーにコメントしてみましょう。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
Scikit-learn でロジスティック回帰(クラス分類編) - Qiita
はじめに ロジスティック回帰は、説明変数の情報にもとづいて データがどのクラスに属するかを予測・分... はじめに ロジスティック回帰は、説明変数の情報にもとづいて データがどのクラスに属するかを予測・分類する(例:ある顧客が商品を買うか買わないかを識別する) 注目している出来事が発生する確率を予測する(例:ある顧客が何%の確率で商品を買うか予測する) ために利用されるモデルです。 この記事では、Scikit-learnライブラリを使い、ロジスティック回帰によりクラス分類を行う方法を備忘録として書いておきます。 Scikit-learn について Scikit-learnは、Pythonの機械学習ライブラリの一つです。 公式ドキュメント:http://scikit-learn.org/stable/index.html ロジスティック回帰について ロジスティック回帰は、分類のためのアルゴリズムです(例:電子機器を故障するクラス or 故障しないクラスに分ける)。単純なアルゴリズムなので実装しや